找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Geometry of Foliations; Philippe Tondeur Book 1997 Springer Basel AG 1997 Finite.Mean curvature.Riemannian geometry.curvature.differential

[复制链接]
查看: 24569|回复: 52
发表于 2025-3-21 19:53:50 | 显示全部楼层 |阅读模式
书目名称Geometry of Foliations
编辑Philippe Tondeur
视频video
丛书名称Monographs in Mathematics
图书封面Titlebook: Geometry of Foliations;  Philippe Tondeur Book 1997 Springer Basel AG 1997 Finite.Mean curvature.Riemannian geometry.curvature.differential
描述The topics in this survey volume concern research done on the differential geom­ etry of foliations over the last few years. After a discussion of the basic concepts in the theory of foliations in the first four chapters, the subject is narrowed down to Riemannian foliations on closed manifolds beginning with Chapter 5. Following the discussion of the special case of flows in Chapter 6, Chapters 7 and 8 are de­ voted to Hodge theory for the transversal Laplacian and applications of the heat equation method to Riemannian foliations. Chapter 9 on Lie foliations is a prepa­ ration for the statement of Molino‘s Structure Theorem for Riemannian foliations in Chapter 10. Some aspects of the spectral theory for Riemannian foliations are discussed in Chapter 11. Connes‘ point of view of foliations as examples of non­ commutative spaces is briefly described in Chapter 12. Chapter 13 applies ideas of Riemannian foliation theory to an infinite-dimensional context. Aside from the list of references on Riemannian foliations (items on this list are referred to in the text by [ ]), we have included several appendices as follows. Appendix A is a list of books and surveys on particular aspects of f
出版日期Book 1997
关键词Finite; Mean curvature; Riemannian geometry; curvature; differential geometry; equation; geometry
版次1
doihttps://doi.org/10.1007/978-3-0348-8914-8
isbn_softcover978-3-0348-9825-6
isbn_ebook978-3-0348-8914-8Series ISSN 1017-0480 Series E-ISSN 2296-4886
issn_series 1017-0480
copyrightSpringer Basel AG 1997
The information of publication is updating

书目名称Geometry of Foliations影响因子(影响力)




书目名称Geometry of Foliations影响因子(影响力)学科排名




书目名称Geometry of Foliations网络公开度




书目名称Geometry of Foliations网络公开度学科排名




书目名称Geometry of Foliations被引频次




书目名称Geometry of Foliations被引频次学科排名




书目名称Geometry of Foliations年度引用




书目名称Geometry of Foliations年度引用学科排名




书目名称Geometry of Foliations读者反馈




书目名称Geometry of Foliations读者反馈学科排名




单选投票, 共有 1 人参与投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:41:11 | 显示全部楼层
978-3-0348-9825-6Springer Basel AG 1997
发表于 2025-3-22 04:06:15 | 显示全部楼层
Geometry of Foliations978-3-0348-8914-8Series ISSN 1017-0480 Series E-ISSN 2296-4886
发表于 2025-3-22 07:23:58 | 显示全部楼层
Zusammengefaßte MetaphorisierungenThe simplest examples of foliations of codimension one are the level surfaces of a function. → ℝ with no critical points. This is of course only possible for a noncompact manifold .. The one-form ω = . is thus assumed nonsingular, i.e. ω. ≠ O for all . ∈..
发表于 2025-3-22 12:25:35 | 显示全部楼层
,Einführung in die Lineare Algebra,A Riemannian metric.on the normal bundle.of a foliation . is holonomy invariant, if..Here we have by definition for...A Riemannian foliation is a foliation . with a holonomy invariant transversal metric . The study of these foliations was initiated by Reinhart in 1959 [Re 2].
发表于 2025-3-22 16:35:01 | 显示全部楼层
Grenzwerte und Stetigkeit von Funktionen,In this chapter we discuss the case of tangentially oriented 1-dimensional foliations, in which many of the previously discussed concepts take a particularly simple form.
发表于 2025-3-22 19:39:47 | 显示全部楼层
https://doi.org/10.1007/978-3-8348-9223-2Throughout this chapter . denotes a transversally oriented Riemannian foliation on a closed oriented manifold .. We discuss Hodge theory and a duality theorem for the cohomology of basic forms [K-To 10,12].
发表于 2025-3-23 00:08:01 | 显示全部楼层
,Einführung in die Lineare Algebra,A Lie foliation is a foliation whose transversal structure is modeled on a Lie group. These were initially studied by Fedida [Fe 1] and Molino [Mo 5,8].
发表于 2025-3-23 04:38:35 | 显示全部楼层
发表于 2025-3-23 07:27:01 | 显示全部楼层
https://doi.org/10.1007/978-3-322-92891-7We begin this chapter with the description of the concept of the graph of a foliation, and then describe Connes’ view of foliations in the context of noncommutative spaces.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-23 02:16
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表