找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Geometry of Deep Learning; A Signal Processing Jong Chul Ye Textbook 2022 The Editor(s) (if applicable) and The Author(s), under exclusive

[复制链接]
楼主: 淹没
发表于 2025-3-30 09:41:26 | 显示全部楼层
Deep Learning Optimizationtworks are extremely non-convex and not even smooth. This non-convexity and non-smoothness make the optimization unaffordable to analyze, and the main concern was whether popular gradient-based approaches might fall into local minimizers.
发表于 2025-3-30 15:08:04 | 显示全部楼层
Generalization Capability of Deep Learningset, this situation being notorious for overfitting from the point of view of classical statistical learning theory. However, empirical results have shown that a deep neural network generalizes well at the test phase, resulting in high performance for the unseen data.
发表于 2025-3-30 19:44:42 | 显示全部楼层
1612-3956 to understand the working mechanism of deep learning from high-dimensional geometry is offered. Then, different forms of generative models like GAN, VAE, normalizing flows, optimal transport, and so on are desc978-981-16-6048-1978-981-16-6046-7Series ISSN 1612-3956 Series E-ISSN 2198-3283
发表于 2025-3-30 23:47:51 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-22 18:14
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表