用户名  找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Geometry of Deep Learning; A Signal Processing Jong Chul Ye Textbook 2022 The Editor(s) (if applicable) and The Author(s), under exclusive

[复制链接]
楼主: 淹没
发表于 2025-3-28 15:38:01 | 显示全部楼层
Geometry of Deep Neural Networks neural network learn? How does a deep neural network, especially a CNN, accomplish these goals? The full answer to these basic questions is still a long way off. Here are some of the insights we’ve obtained while traveling towards that destination. In particular, we explain why the classic approach
发表于 2025-3-28 20:00:28 | 显示全部楼层
Deep Learning Optimizationally gradient-based local update schemes. However, the biggest obstacle recognized by the entire community is that the loss surfaces of deep neural networks are extremely non-convex and not even smooth. This non-convexity and non-smoothness make the optimization unaffordable to analyze, and the main
发表于 2025-3-28 22:54:33 | 显示全部楼层
发表于 2025-3-29 03:53:22 | 显示全部楼层
Summary and Outlookrevolution”. Despite the great successes of deep learning in various areas, there is a tremendous lack of rigorous mathematical foundations which enable us to understand why deep learning methods perform well.
发表于 2025-3-29 08:27:54 | 显示全部楼层
发表于 2025-3-29 13:42:43 | 显示全部楼层
发表于 2025-3-29 17:59:58 | 显示全部楼层
tworks are extremely non-convex and not even smooth. This non-convexity and non-smoothness make the optimization unaffordable to analyze, and the main concern was whether popular gradient-based approaches might fall into local minimizers.
发表于 2025-3-29 23:09:37 | 显示全部楼层
发表于 2025-3-30 00:04:54 | 显示全部楼层
发表于 2025-3-30 05:14:25 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-20 04:11
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表