找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Geometry and Topology of Manifolds; 10th China-Japan Con Akito Futaki,Reiko Miyaoka,Weiping Zhang Conference proceedings 2016 Springer Japa

[复制链接]
楼主: DART
发表于 2025-3-30 08:36:53 | 显示全部楼层
Einige physikalisch-chemische Grundlagen .) is strongly K-stable in the sense of [.], we shall show that the balanced metrics have (BP). In a subsequent paper [.], this property (BP) plays a very important role in the study of the Yau-Tian-Donaldson conjecture for general polarizations.
发表于 2025-3-30 14:18:34 | 显示全部楼层
https://doi.org/10.1007/978-3-642-49711-7olds, and show that it gives a coefficient of the divergent term of the mean curvature function. Moreover, we show that the product . called the product curvature (resp. . called normalized product curvature) of . (resp. .) and the limiting normal curvature . is an intrinsic invariant of the surface
发表于 2025-3-30 19:38:00 | 显示全部楼层
Einige physikalisch-chemische Grundlagend by . the group of relative symplectomorphisms. There exists a short exact sequence involving with those groups, whose kernel is .. On such a group . one has a celebrated homomorphism called the Calabi invariant. By dividing the exact sequence by the kernel of the Calabi invariant, one obtains a ce
发表于 2025-3-31 00:04:52 | 显示全部楼层
发表于 2025-3-31 04:32:23 | 显示全部楼层
Grundbegriffe der Informationstheorie,nnections to the K-energy. We will also include proof for certain known results which may not have been well presented or less accessible in the literature. We always assume that . is a compact Kähler manifold. By a polarization, we mean a positive line bundle . over ., then we call (., .) a polariz
发表于 2025-3-31 06:53:36 | 显示全部楼层
Akito Futaki,Reiko Miyaoka,Weiping ZhangShows recent development in.geometry and topology.Gives access to sophisticated.techniques in geometric analysis.Leads to future directions ofresearch in geometry and topology.Includes supplementary m
发表于 2025-3-31 09:28:25 | 显示全部楼层
Geometry and Topology of Manifolds978-4-431-56021-0Series ISSN 2194-1009 Series E-ISSN 2194-1017
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-25 10:21
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表