找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Geometry and Topology of Manifolds; 10th China-Japan Con Akito Futaki,Reiko Miyaoka,Weiping Zhang Conference proceedings 2016 Springer Japa

[复制链接]
楼主: DART
发表于 2025-3-28 18:36:48 | 显示全部楼层
发表于 2025-3-28 21:21:40 | 显示全部楼层
发表于 2025-3-29 00:43:16 | 显示全部楼层
Die Mikroprozessoren 8086 und 8088, surfaces especially, such data are holomorphic. We can regard this formula as an analogue (in Contact Riemannian Geometry) of . for minimal surfaces in .. Hence for minimal ones in ., there are many similar results to those for minimal surfaces in .. In particular, we prove a . for . minimal Legend
发表于 2025-3-29 05:12:17 | 显示全部楼层
Hilfsmittel zur Programmentwicklung,ilizes the notion of linear stratification on the gluing bundles for the orbifold stratified spaces. We introduce a concept of good gluing structure to ensure a smooth structure on the stratified space. As an application, we provide an orbifold structure on the coarse moduli space . of stable genus
发表于 2025-3-29 09:25:47 | 显示全部楼层
发表于 2025-3-29 13:10:35 | 显示全部楼层
https://doi.org/10.1007/978-3-642-47616-7t is, self-shrinkers of mean curvature flow in Euclidean spaces and examples of compact self-shrinkers are discussed. We also review properties of critical points for weighted area functional for weighted volume-preserving variations, that is, .-hypersurfaces of weighted volume-preserving mean curva
发表于 2025-3-29 19:14:22 | 显示全部楼层
发表于 2025-3-29 20:56:15 | 显示全部楼层
发表于 2025-3-30 02:18:31 | 显示全部楼层
发表于 2025-3-30 06:36:51 | 显示全部楼层
Die sedimentäre GesteinsbildungWe explain two main ingredients in our work. The first is the adjoint transform of Willmore surfaces introduced by the first author, which generalizes the dual Willmore surface construction. The second is the DPW method applied to Willmore surfaces whose conformal Gauss map is well-known to be a har
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-25 10:10
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表