找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Geometry Over Nonclosed Fields; Fedor Bogomolov,Brendan Hassett,Yuri Tschinkel Conference proceedings 2017 Springer International Publishi

[复制链接]
楼主: fumble
发表于 2025-3-25 06:37:03 | 显示全部楼层
发表于 2025-3-25 11:06:54 | 显示全部楼层
发表于 2025-3-25 12:14:56 | 显示全部楼层
https://doi.org/10.1007/978-3-322-96556-1 space and globally generated invertible sheaves. As an application, we study del Pezzo surfaces of large degree with a view towards Brauer–Severi varieties, and recover classical results on rational points, the Hasse principle, and weak approximation.
发表于 2025-3-25 16:03:53 | 显示全部楼层
发表于 2025-3-25 22:28:36 | 显示全部楼层
发表于 2025-3-26 03:57:14 | 显示全部楼层
https://doi.org/10.1007/978-3-322-96556-1 space and globally generated invertible sheaves. As an application, we study del Pezzo surfaces of large degree with a view towards Brauer–Severi varieties, and recover classical results on rational points, the Hasse principle, and weak approximation.
发表于 2025-3-26 04:26:21 | 显示全部楼层
发表于 2025-3-26 11:38:53 | 显示全部楼层
Lines on Cubic Hypersurfaces Over Finite Fields, a smooth cubic threefold ., the variety of lines contained in . is a smooth projective surface .(.) for which the Tate conjecture holds, and we obtain information about the Picard number of .(.) and the 5-dimensional principally polarized Albanese variety .(.(.)).
发表于 2025-3-26 13:28:54 | 显示全部楼层
,Morphisms to Brauer–Severi Varieties, with Applications to Del Pezzo Surfaces, space and globally generated invertible sheaves. As an application, we study del Pezzo surfaces of large degree with a view towards Brauer–Severi varieties, and recover classical results on rational points, the Hasse principle, and weak approximation.
发表于 2025-3-26 19:32:34 | 显示全部楼层
Odd-Dimensional Cohomology with Finite Coefficients and Roots of Unity,le smooth projective variety implies the existence of certain primitive roots of unity in the field of definition of the variety. This text was inspired by an exercise in Serre’s Lectures on the Mordell–Weil theorem.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-21 10:46
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表