找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Geometry Over Nonclosed Fields; Fedor Bogomolov,Brendan Hassett,Yuri Tschinkel Conference proceedings 2017 Springer International Publishi

[复制链接]
查看: 22555|回复: 42
发表于 2025-3-21 19:33:04 | 显示全部楼层 |阅读模式
书目名称Geometry Over Nonclosed Fields
编辑Fedor Bogomolov,Brendan Hassett,Yuri Tschinkel
视频videohttp://file.papertrans.cn/384/383751/383751.mp4
概述Covers exciting new research in the fields of classical algebraic geometry and arithmetic geometry.Examines recent research and results concerning K3-surfaces, including formulations of the Torelli Th
丛书名称Simons Symposia
图书封面Titlebook: Geometry Over Nonclosed Fields;  Fedor Bogomolov,Brendan Hassett,Yuri Tschinkel Conference proceedings 2017 Springer International Publishi
描述Based on the Simons Symposia held in 2015, the proceedings in this volume focus on rational curves on higher-dimensional algebraic varieties and applications of the theory of curves to arithmetic problems. There has been significant progress in this field with major new results, which have given new impetus to the study of rational curves and spaces of rational curves on K3 surfaces and their higher-dimensional generalizations. One main recent insight the book covers is the idea that the geometry of rational curves is tightly coupled to properties of derived categories of sheaves on K3 surfaces. The implementation of this idea led to proofs of long-standing conjectures concerning birational properties of holomorphic symplectic varieties, which in turn should yield new theorems in arithmetic. This proceedings volume covers these new insights in detail. .
出版日期Conference proceedings 2017
关键词algebraic geometry; rational curves; K3 surfaces; cubic four-folds; hyper-Kahler manifolds
版次1
doihttps://doi.org/10.1007/978-3-319-49763-1
isbn_softcover978-3-319-84235-6
isbn_ebook978-3-319-49763-1Series ISSN 2365-9564 Series E-ISSN 2365-9572
issn_series 2365-9564
copyrightSpringer International Publishing AG 2017
The information of publication is updating

书目名称Geometry Over Nonclosed Fields影响因子(影响力)




书目名称Geometry Over Nonclosed Fields影响因子(影响力)学科排名




书目名称Geometry Over Nonclosed Fields网络公开度




书目名称Geometry Over Nonclosed Fields网络公开度学科排名




书目名称Geometry Over Nonclosed Fields被引频次




书目名称Geometry Over Nonclosed Fields被引频次学科排名




书目名称Geometry Over Nonclosed Fields年度引用




书目名称Geometry Over Nonclosed Fields年度引用学科排名




书目名称Geometry Over Nonclosed Fields读者反馈




书目名称Geometry Over Nonclosed Fields读者反馈学科排名




单选投票, 共有 1 人参与投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:44:03 | 显示全部楼层
发表于 2025-3-22 03:51:54 | 显示全部楼层
发表于 2025-3-22 07:02:16 | 显示全部楼层
A Stronger Derived Torelli Theorem for K3 Surfaces,hen they are isomorphic. In this paper we study more refined aspects of filtered derived equivalences related to the action on the cohomological realizations of the Mukai motive. It is shown that if a filtered derived equivalence between K3 surfaces also preserves ample cones then one can find an is
发表于 2025-3-22 09:56:17 | 显示全部楼层
发表于 2025-3-22 15:00:37 | 显示全部楼层
Odd-Dimensional Cohomology with Finite Coefficients and Roots of Unity,le smooth projective variety implies the existence of certain primitive roots of unity in the field of definition of the variety. This text was inspired by an exercise in Serre’s Lectures on the Mordell–Weil theorem.
发表于 2025-3-22 17:57:28 | 显示全部楼层
发表于 2025-3-22 21:15:50 | 显示全部楼层
发表于 2025-3-23 01:49:32 | 显示全部楼层
Conference proceedings 2017cations of the theory of curves to arithmetic problems. There has been significant progress in this field with major new results, which have given new impetus to the study of rational curves and spaces of rational curves on K3 surfaces and their higher-dimensional generalizations. One main recent in
发表于 2025-3-23 08:31:14 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-22 03:19
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表