找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Geometric Methods in Algebra and Number Theory; Fedor Bogomolov,Yuri Tschinkel Textbook 2005 Birkhäuser Boston 2005 Area.Cohomology.Volume

[复制链接]
楼主: notable
发表于 2025-3-25 04:11:51 | 显示全部楼层
发表于 2025-3-25 07:33:39 | 显示全部楼层
Motivic approach to limit sheaves,We propose a motivic analog of limit mixed Hodge structures. Working in the context of triangulated categories of motivic objects on schemes we introduce and study a limit motive functor and a motivic vanishing cycle sheaf.
发表于 2025-3-25 14:11:03 | 显示全部楼层
发表于 2025-3-25 17:22:45 | 显示全部楼层
发表于 2025-3-25 23:20:28 | 显示全部楼层
Durchführung von Miranda-Evaluierungen surfaces which are rigid, i.e., without nontrivial deformations, and which admit an unramified covering which is isomorphic to a product of curves of genus at least 2..In this case the moduli space of surfaces homeomorphic to the given surface consists either of a unique real point, or of a pair of
发表于 2025-3-26 00:50:58 | 显示全部楼层
Grzegorz Domański,Yakov Kuzyakov,Karl Stahr for these moduli spaces can often be constructed using the techniques of Geometric Invariant Theory. In genus two, this boils down to the invariant theory of binary sextics, which was developed systematically in the 19th century.
发表于 2025-3-26 07:30:37 | 显示全部楼层
https://doi.org/10.1007/978-3-030-75158-6 .(., ℂ) vs. .(., ℂ) flat connections and character varieties for curves, respectively. Several new results and conjectures and their relations to works of Hitchin, Gothen, Garsia-Haiman and Earl-Kirwan are explained. These use the representation theory of finite groups of Lie-type via the arithmeti
发表于 2025-3-26 10:16:43 | 显示全部楼层
发表于 2025-3-26 15:07:02 | 显示全部楼层
发表于 2025-3-26 19:07:01 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-25 22:55
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表