找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Geometric Methods in Algebra and Number Theory; Fedor Bogomolov,Yuri Tschinkel Textbook 2005 Birkhäuser Boston 2005 Area.Cohomology.Volume

[复制链接]
楼主: notable
发表于 2025-3-23 11:41:27 | 显示全部楼层
Individualistic Approaches to SuicideWe propose a conjecture combining the Mordell-Lang conjecture with an important special case of the André-Oort conjecture, and explain how existing results imply evidence for it.
发表于 2025-3-23 17:31:10 | 显示全部楼层
https://doi.org/10.1007/978-981-10-1825-1We propose a motivic analog of limit mixed Hodge structures. Working in the context of triangulated categories of motivic objects on schemes we introduce and study a limit motive functor and a motivic vanishing cycle sheaf.
发表于 2025-3-23 20:26:41 | 显示全部楼层
Material Safety Specifications,Let . be a classical Lie group and . a maximal parabolic subgroup. We describe a quantum Pieri rule which holds in the small quantum cohomology ring of .. We also give a presentation of this ring in terms of special Schubert class generators and relations. This is a survey paper which reports on joint work with Anders S. Buch and Andrew Kresch.
发表于 2025-3-23 22:44:06 | 显示全部楼层
发表于 2025-3-24 02:38:11 | 显示全部楼层
发表于 2025-3-24 07:26:04 | 显示全部楼层
发表于 2025-3-24 14:09:53 | 显示全部楼层
发表于 2025-3-24 18:08:07 | 显示全部楼层
,Ax-Kochen-Eršov Theorems for ,-adic integrals and motivic integration,We express the Lefschetz number of iterates of the monodromy of a function on a smooth complex algebraic variety in terms of the Euler characteristic of a space of truncated arcs.
发表于 2025-3-24 19:57:58 | 显示全部楼层
Nested sets and Jeffrey-Kirwan residues,For the complement of a hyperplane arrangement we construct a dual homology basis to the no-broken-circuit basis of cohomology. This is based on the theory of wonderful embeddings and nested sets developed in [4]. Our result allows us to express the so-called Jeffrey-Kirwan residues in terms of integration on some explicit geometric cycles.
发表于 2025-3-25 01:21:05 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-25 22:52
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表