用户名  找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Geometric Harmonic Analysis IV; Boundary Layer Poten Dorina Mitrea,Irina Mitrea,Marius Mitrea Book 2023 The Editor(s) (if applicable) and T

[复制链接]
楼主: HAVEN
发表于 2025-3-26 21:35:54 | 显示全部楼层
发表于 2025-3-27 05:07:10 | 显示全部楼层
Dorina Mitrea,Irina Mitrea,Marius MitreaCurrent theory of layer potentials for elliptic systems in optimal settings for a wealth of function spaces.Detailed account of relevant boundary layer operators for Stokes’ system of hydrostatics in
发表于 2025-3-27 08:07:49 | 显示全部楼层
Layer Potential Operators on Lebesgue and Sobolev Spaces,nal Integration Theorem, or the abstract boundedness criteria from [16]) other, more delicate properties (typically cancelation sensitive) require fully employing the resourcefulness of the algebraic/geometric ambient and, crucially, involve differential calculus. The boundedness of singular integra
发表于 2025-3-27 10:23:06 | 显示全部楼层
发表于 2025-3-27 14:53:47 | 显示全部楼层
发表于 2025-3-27 19:35:05 | 显示全部楼层
发表于 2025-3-28 01:20:53 | 显示全部楼层
发表于 2025-3-28 02:08:47 | 显示全部楼层
Green Formulas and Layer Potential Operators for the Stokes System,nal Integration Theorem, or the abstract boundedness criteria from [16]) other, more delicate properties (typically cancelation sensitive) require fully employing the resourcefulness of the algebraic/geometric ambient and, crucially, involve differential calculus. The boundedness of singular integra
发表于 2025-3-28 10:13:53 | 显示全部楼层
发表于 2025-3-28 11:41:09 | 显示全部楼层
Hardy Spaces for Second-Order Weakly Elliptic Operators in the Complex Plane,in the nontangential sense, and for which the size of the solution is measured using the nontangential maximal operator. Ultimately, our analysis in §. paints a very precise picture of the failure of Fredholm solvability of the Dirichlet and Regularity Problems for Bitsadze’s operator in the unit di
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-14 03:44
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表