用户名  找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Geometric Harmonic Analysis IV; Boundary Layer Poten Dorina Mitrea,Irina Mitrea,Marius Mitrea Book 2023 The Editor(s) (if applicable) and T

[复制链接]
楼主: HAVEN
发表于 2025-3-23 09:41:46 | 显示全部楼层
Miriam Ruiz-Serrano,J. Carlos Menéndez the Cauchy operator in terms of Ahlfors regularity, and X. Tolsa’s results on analytic capacity, to name just a couple. Nonetheless, this fruitful interplay between these branches of mathematics appears to have been much less explored in the higher-dimensional setting, involving several complex variables.
发表于 2025-3-23 15:49:52 | 显示全部楼层
Generalized Double Layers in Uniformly Rectifiable Domains,ce-free vector-valued kernel. The algebraic structure just described confers excellent cancelation properties (brought to fruition by the Divergence Theorem) which, in turn, permit us to establish boundedness results for these generalized double layers for a multitude of basic scales of function spaces.
发表于 2025-3-23 18:15:33 | 显示全部楼层
发表于 2025-3-24 00:02:39 | 显示全部楼层
发表于 2025-3-24 03:56:00 | 显示全部楼层
Applications of Computer-Aided Drug Design,integral kernel for a singular integral operator to map either of these spaces into itself, and the brand of Divergence Theorem produced in [68] plays a crucial role in ensuring this is indeed the case.
发表于 2025-3-24 09:08:18 | 显示全部楼层
发表于 2025-3-24 11:38:17 | 显示全部楼层
https://doi.org/10.1007/978-1-4612-4828-6sk of the complex plane. In §. we carry out a program with similar aims for a more inclusive family of scalar second-order operators in the complex plane, namely ., which contains Bitsadze’s operator as a special case (corresponding to .).
发表于 2025-3-24 18:08:30 | 显示全部楼层
发表于 2025-3-24 21:38:24 | 显示全部楼层
Layer Potential Operators Acting from Boundary Besov and Triebel-Lizorkin Spaces,ancelation properties (of the type “.”), which generic Calderón-Zygmund convolution type operators on arbitrary UR sets typically fail to satisfy. This explains the focus on singular integral operators of layer potential type adopted here.
发表于 2025-3-25 00:25:03 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-14 12:38
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表