找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Geometric Aspects of Functional Analysis; Israel Seminar (GAFA Bo‘az Klartag,Emanuel Milman Book 2020 Springer Nature Switzerland AG 2020 A

[复制链接]
楼主: 轻舟
发表于 2025-3-28 15:01:22 | 显示全部楼层
Keitarou Naruse,Yukinori Kakazuquence of intrinsic volumes. The main result states that the intrinsic volume sequence concentrates sharply around a specific index, called the central intrinsic volume. Furthermore, among all convex bodies whose central intrinsic volume is fixed, an appropriately scaled cube has the intrinsic volum
发表于 2025-3-28 18:54:28 | 显示全部楼层
发表于 2025-3-28 23:50:34 | 显示全部楼层
发表于 2025-3-29 06:12:43 | 显示全部楼层
Mika Vainio,Pekka Appelqvist,Aarne Halmeconvex bodies of the form “1∕.”. The map .↦.. sending a body to its reciprocal is a duality on the class of reciprocal bodies, and we study its properties..To connect this new map with the classic polarity we use another construction, associating to each convex body . a star body which we call its f
发表于 2025-3-29 08:47:00 | 显示全部楼层
Distributed Autonomous Robotic Systems 8l ., . ∈{1, …, .} and small enough . = .(..), where . > 0 is a universal constant, it must be the case that . ≥ 2.. This stands in contrast to the metric theory of commutative .. spaces, as it is known that for any . ≥ 1, any . points in .. embed exactly in . for . = .(. − 1)∕2..Our proof is based o
发表于 2025-3-29 12:38:18 | 显示全部楼层
https://doi.org/10.1007/978-3-030-39536-0 of the convex sets grows with the number of birational operations. In the case of complex surfaces we explain how to associate a linear program to certain sequences of blow-ups and how to reduce verifying the asymptotic log positivity to checking feasibility of the program.
发表于 2025-3-29 18:00:16 | 显示全部楼层
发表于 2025-3-29 23:24:57 | 显示全部楼层
发表于 2025-3-30 00:59:41 | 显示全部楼层
发表于 2025-3-30 06:52:41 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-20 13:58
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表