找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Geometric Aspects of Functional Analysis; Israel Seminar (GAFA Bo‘az Klartag,Emanuel Milman Book 2020 Springer Nature Switzerland AG 2020 A

[复制链接]
楼主: 轻舟
发表于 2025-3-25 06:25:54 | 显示全部楼层
A Generalized Central Limit Conjecture for Convex Bodies,t (up to a small factor) to the KLS conjecture. Any polynomial improvement in the current KLS bound of .. in . implies the generalized CLT, and vice versa. This tight connection suggests that the generalized CLT might provide insight into basic open questions in asymptotic convex geometry.
发表于 2025-3-25 07:51:04 | 显示全部楼层
,Further Investigations of Rényi Entropy Power Inequalities and an Entropic Characterization of s-Corated result of Barron (Ann Probab 14:336–342, 1986). Additionally, we give an entropic characterization of the class of .-concave densities, which extends a classical result of Cover and Zhang (IEEE Trans Inform Theory 40(4):1244–1246, 1994).
发表于 2025-3-25 13:38:31 | 显示全部楼层
发表于 2025-3-25 18:52:07 | 显示全部楼层
发表于 2025-3-25 22:09:30 | 显示全部楼层
Small Ball Probability for the Condition Number of Random Matrices,mbination of known results and techniques, it was not noticed in the literature before. As a key step of the proof, we apply estimates for the singular values of ., . obtained (under some additional assumptions) by Nguyen.
发表于 2025-3-26 03:35:49 | 显示全部楼层
发表于 2025-3-26 07:46:57 | 显示全部楼层
Distributed Autonomous Robotic System 6A classical theorem of Alon and Milman states that any . dimensional centrally symmetric convex body has a projection of dimension . which is either close to the .-dimensional Euclidean ball or to the .-dimensional cross-polytope. We extended this result to non-symmetric convex bodies.
发表于 2025-3-26 09:01:04 | 显示全部楼层
发表于 2025-3-26 14:37:45 | 显示全部楼层
发表于 2025-3-26 19:00:50 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-20 19:07
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表