找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Geometric Approximation Theory; Alexey R. Alimov,Igor’ G. Tsar’kov Book 2021 The Editor(s) (if applicable) and The Author(s), under exclus

[复制链接]
楼主: architect
发表于 2025-3-30 09:22:36 | 显示全部楼层
John Fry,Gerald Sandler,David Brooksce. In this chapter, we consider the problem of approximating a set by a class of sets. In this problem, it is not only the evaluation of the approximation that is important, but also the set that best approximates this class (an optimal set).
发表于 2025-3-30 14:12:25 | 显示全部楼层
Comparative Epidemiology Experiment: Brazil,ple, classes of finite-dimensional subspaces (nested or not nested), classes of nonlinear objects defined by a certain parameter or by a set of parameters. In particular, this problem includes the classical Bernstein’s problem of approximation of an element by a fixed family of nested planes or the
发表于 2025-3-30 18:03:08 | 显示全部楼层
发表于 2025-3-31 00:13:03 | 显示全部楼层
1439-7382 ts and related problems, presenting novel results throughout the section. This text is suitable for both theoretical and applied viewpoints and e978-3-030-90953-6978-3-030-90951-2Series ISSN 1439-7382 Series E-ISSN 2196-9922
发表于 2025-3-31 03:00:30 | 显示全部楼层
发表于 2025-3-31 06:26:01 | 显示全部楼层
,Chebyshev Alternation Theorem. Haar’s and Mairhuber’s Theorems,es .(.), we give several results that either characterize or give sufficient conditions for the existence of Chebyshev subspaces in .(.). Among such conditions, we mention de la Vallée Poussin’s estimates (see Sect. .), the Haar characterization property (see Sect. .), and Mairhuber’s theorem (see S
发表于 2025-3-31 12:31:27 | 显示全部楼层
发表于 2025-3-31 16:11:26 | 显示全部楼层
Existence. Compact, Boundedly Compact, Approximatively Compact, and ,-Compact Sets. Continuity of tcept of boundedly compact sets (an intersection of such a set with a closed ball is compact). Further generalization of this concept gives rise to the important concept of approximative compactness (see Definition 4.2 below) introduced by Efimov and Stechkin in the 1950s. An approximatively compact
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-18 20:59
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表