找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Geometric Approximation Theory; Alexey R. Alimov,Igor’ G. Tsar’kov Book 2021 The Editor(s) (if applicable) and The Author(s), under exclus

[复制链接]
楼主: architect
发表于 2025-3-28 16:44:13 | 显示全部楼层
Discursive Approaches to Language Policyes .(.), we give several results that either characterize or give sufficient conditions for the existence of Chebyshev subspaces in .(.). Among such conditions, we mention de la Vallée Poussin’s estimates (see Sect. .), the Haar characterization property (see Sect. .), and Mairhuber’s theorem (see S
发表于 2025-3-28 18:54:29 | 显示全部楼层
https://doi.org/10.1007/978-3-030-55038-7of a finite-dimensional subspace (or a convex set). We present two fundamental results on approximation by convex sets in the inner-product setting — the Kolmogorov criterion of best approximation and Phelps’s criterion for convexity of a Chebyshev set in a Euclidean space in terms of the Lipschitz
发表于 2025-3-28 23:28:10 | 显示全部楼层
发表于 2025-3-29 06:05:38 | 显示全部楼层
https://doi.org/10.1007/978-981-19-4097-2owing fact important for applications: in corresponding spaces, a nonconvex set cannot be a Chebyshev set. As a corollary, at some point either the existence or the uniqueness property is not satisfied. Results of this kind can be useful in solving extremal problems.
发表于 2025-3-29 08:48:05 | 显示全部楼层
Ryan Evely Gildersleeve,Katie Kleinhesselink uniqueness sets, and so on). By structural characteristics of sets one usually understands properties of linearity, finite-dimensionality, convexity, connectedness of various kinds, and smoothness of sets. From results of such kind one may derive necessary and sufficient conditions for a set to hav
发表于 2025-3-29 13:14:36 | 显示全部楼层
https://doi.org/10.1057/9781137487339pproximative properties of more general subspaces stems from consideration of Chebyshev (Haar) systems of functions that extend the classical Chebyshev system composed of polynomials of degree at most . (see Chap. 2). Of course, every space . contains trivial Chebyshev subspaces: . and ..
发表于 2025-3-29 18:37:10 | 显示全部楼层
发表于 2025-3-29 22:14:23 | 显示全部楼层
发表于 2025-3-30 02:39:37 | 显示全部楼层
frequently encountered in various extreme problems. Properties of Haar cones, as well as uniqueness and strong uniqueness of best approximation by Haar cones, are discussed in Sect. .. The alternation theorem for Haar cones is given in Sect. .. Next in ., we discuss the property of varisolvency, wh
发表于 2025-3-30 04:36:54 | 显示全部楼层
https://doi.org/10.1007/978-1-4842-3267-5al-valued functions, approximation by Chebyshev subspaces was found to be closely related to various problems in interpolation, uniqueness, and the number of zeros in nontrivial polynomials (the generalized Haar property). For vector-valued functions, the relation between such properties turned out
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-19 06:57
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表