找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Geodesic Flows; Gabriel P. Paternain Book 1999 Springer Science+Business Media New York 1999 Fundamental group.Loop group.Riemannian manif

[复制链接]
楼主: Tamoxifen
发表于 2025-3-23 12:03:01 | 显示全部楼层
发表于 2025-3-23 15:02:35 | 显示全部楼层
https://doi.org/10.1007/978-3-663-16096-0c flows have the remarkable property of being at the intersection of various branches in mathematics; this gives them a rich structure and makes them an exciting subject of research with a long tradition.
发表于 2025-3-23 18:28:53 | 显示全部楼层
Männlichkeit und Arbeitskraftunternehmern important property of the vertical subbundle which we call the .. This property reflects the fact that the geodesic flow arises from a second order differential equation on .. Next we derive the Riccati equations, after which we introduce the Grassmannian bundle of Lagrangian subspaces and show ho
发表于 2025-3-24 01:30:14 | 显示全部楼层
发表于 2025-3-24 02:40:47 | 显示全部楼层
发表于 2025-3-24 06:52:43 | 显示全部楼层
发表于 2025-3-24 10:49:52 | 显示全部楼层
发表于 2025-3-24 15:36:40 | 显示全部楼层
0743-1643 ggestions. Pablo Spallanzani wrote solutions to several of the exercises. I have used his solutions to write many of the hints and answers. I also wish to thank978-1-4612-7212-0978-1-4612-1600-1Series ISSN 0743-1643 Series E-ISSN 2296-505X
发表于 2025-3-24 20:32:01 | 显示全部楼层
发表于 2025-3-25 00:30:54 | 显示全部楼层
Book 1999e close to my research interests. An important goal here is to describe properties of the geodesic flow which do not require curvature assumptions. A typical example of such a property and a central result in this work is Mane‘s formula that relates the topological entropy of the geodesic flow with
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-26 10:08
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表