找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Geodesic Flows; Gabriel P. Paternain Book 1999 Springer Science+Business Media New York 1999 Fundamental group.Loop group.Riemannian manif

[复制链接]
查看: 16656|回复: 38
发表于 2025-3-21 16:38:14 | 显示全部楼层 |阅读模式
书目名称Geodesic Flows
编辑Gabriel P. Paternain
视频video
丛书名称Progress in Mathematics
图书封面Titlebook: Geodesic Flows;  Gabriel P. Paternain Book 1999 Springer Science+Business Media New York 1999 Fundamental group.Loop group.Riemannian manif
描述The aim of this book is to present the fundamental concepts and properties of the geodesic flow of a closed Riemannian manifold. The topics covered are close to my research interests. An important goal here is to describe properties of the geodesic flow which do not require curvature assumptions. A typical example of such a property and a central result in this work is Mane‘s formula that relates the topological entropy of the geodesic flow with the exponential growth rate of the average numbers of geodesic arcs between two points in the manifold. The material here can be reasonably covered in a one-semester course. I have in mind an audience with prior exposure to the fundamentals of Riemannian geometry and dynamical systems. I am very grateful for the assistance and criticism of several people in preparing the text. In particular, I wish to thank Leonardo Macarini and Nelson Moller who helped me with the writing of the first two chapters and the figures. Gonzalo Tomaria caught several errors and contributed with helpful suggestions. Pablo Spallanzani wrote solutions to several of the exercises. I have used his solutions to write many of the hints and answers. I also wish to thank
出版日期Book 1999
关键词Fundamental group; Loop group; Riemannian manifold; curvature; differential geometry; dynamical systems; e
版次1
doihttps://doi.org/10.1007/978-1-4612-1600-1
isbn_softcover978-1-4612-7212-0
isbn_ebook978-1-4612-1600-1Series ISSN 0743-1643 Series E-ISSN 2296-505X
issn_series 0743-1643
copyrightSpringer Science+Business Media New York 1999
The information of publication is updating

书目名称Geodesic Flows影响因子(影响力)




书目名称Geodesic Flows影响因子(影响力)学科排名




书目名称Geodesic Flows网络公开度




书目名称Geodesic Flows网络公开度学科排名




书目名称Geodesic Flows被引频次




书目名称Geodesic Flows被引频次学科排名




书目名称Geodesic Flows年度引用




书目名称Geodesic Flows年度引用学科排名




书目名称Geodesic Flows读者反馈




书目名称Geodesic Flows读者反馈学科排名




单选投票, 共有 1 人参与投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:31:04 | 显示全部楼层
,Die Molybdän- und Vanadinstähle,In this chapter we introduce the counting functions and we relate them to the topological entropy ..(.) of the geodesic flow of ..
发表于 2025-3-22 04:27:53 | 显示全部楼层
Heinz Ismar,Günther Lange,Wilhelm KrelleIn this chapter we present a proof of Mañé’s formula for geodesic flows and convex billiards. The proof rests on the twist property of the vertical subbundle that we described in Chapter 2, Pesin’s theory which enters via Przytycki’s inequality and a very clever change of variables which is useful also in other situations (cf. Proposition 4.8).
发表于 2025-3-22 07:14:12 | 显示全部楼层
发表于 2025-3-22 09:02:12 | 显示全部楼层
发表于 2025-3-22 14:12:33 | 显示全部楼层
,Mañé’s Formula for Geodesic Flows and Convex Billiards,In this chapter we present a proof of Mañé’s formula for geodesic flows and convex billiards. The proof rests on the twist property of the vertical subbundle that we described in Chapter 2, Pesin’s theory which enters via Przytycki’s inequality and a very clever change of variables which is useful also in other situations (cf. Proposition 4.8).
发表于 2025-3-22 20:34:04 | 显示全部楼层
发表于 2025-3-22 23:15:49 | 显示全部楼层
发表于 2025-3-23 03:36:55 | 显示全部楼层
发表于 2025-3-23 07:25:13 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-26 10:08
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表