找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Generalized Functions Theory and Technique; Theory and Technique Ram P. Kanwal Book 19982nd edition Birkhäuser Boston 1998 Boundary value p

[复制链接]
楼主: Novice
发表于 2025-3-25 07:13:08 | 显示全部楼层
发表于 2025-3-25 07:33:13 | 显示全部楼层
发表于 2025-3-25 13:56:16 | 显示全部楼层
发表于 2025-3-25 18:49:38 | 显示全部楼层
The Schwartz-Sobolev Theory of Distributions,tance ., of . from the origin, is . = |.| = (. + . + ... + .).. Let . be an .-tuple of nonnegative integers, . = (., .,..., .), the so-called . of order .; then we define . and . where . = ∂/∂., . = 1, 2,..., .. For the one-dimensional case . reduces to .. Furthermore, if any component of . is zero
发表于 2025-3-25 21:02:28 | 显示全部楼层
发表于 2025-3-26 01:58:32 | 显示全部楼层
发表于 2025-3-26 04:42:05 | 显示全部楼层
发表于 2025-3-26 08:41:28 | 显示全部楼层
Direct Products and Convolutions of Distributions,spectively. Then a point in the Cartesian product . = . × . is (.) = (.,..., ., .,..., .). Furthermore, let us denote by ., ., and .the spaces of test functions with compact support in ., ., and ., respectively. When . (.) and .(.) are locally integrable functions in the spaces . and ., then the fun
发表于 2025-3-26 16:03:19 | 显示全部楼层
The Laplace Transform,is variable in this chapter. Let .(.) be a complex-valued function of the real variable . such that .(.). is abolutely integrable over 0 < . < ∞, where . is a real number. Then the Laplace transform of .(.), . ≥ 0, is defined as . where . = . + .. The Laplace transform defined by (1) has the followi
发表于 2025-3-26 19:28:21 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-24 06:54
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表