找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Generalized Functions Theory and Technique; Theory and Technique Ram P. Kanwal Book 19982nd edition Birkhäuser Boston 1998 Boundary value p

[复制链接]
楼主: Novice
发表于 2025-3-23 11:16:26 | 显示全部楼层
发表于 2025-3-23 15:24:19 | 显示全部楼层
https://doi.org/10.1007/978-3-319-44577-9mptotic evaluation of divergent integrals, boundary layer theory and singular perturbations. Our aim in this chapter is to present the basic concepts of their methods and illustrate them with representative examples.
发表于 2025-3-23 20:19:20 | 显示全部楼层
发表于 2025-3-23 23:50:31 | 显示全部楼层
发表于 2025-3-24 04:49:57 | 显示全部楼层
发表于 2025-3-24 10:19:35 | 显示全部楼层
发表于 2025-3-24 14:44:39 | 显示全部楼层
Congenital Pseudarthrosis of the Clavicleproduct of the distributions .(.) ∈ .′. and .(.) ∈ .′. according to (1),.and check whether the right side of this equation defines a linear continuous functional over .. For this purpose, we prove the following lemma:.(.) = <.(.), .(.)>, . ∈ .′.(.) ∈ ., ., . (., .,..., .) . {.(.)} → .(.) . → ∞, .(.) = {<.(.), .(.)>} → .(.) . → ∞.
发表于 2025-3-24 17:42:51 | 显示全部楼层
Direct Products and Convolutions of Distributions,product of the distributions .(.) ∈ .′. and .(.) ∈ .′. according to (1),.and check whether the right side of this equation defines a linear continuous functional over .. For this purpose, we prove the following lemma:.(.) = <.(.), .(.)>, . ∈ .′.(.) ∈ ., ., . (., .,..., .) . {.(.)} → .(.) . → ∞, .(.) = {<.(.), .(.)>} → .(.) . → ∞.
发表于 2025-3-24 19:54:27 | 显示全部楼层
Applications to Wave Propagation,ul method of attacking these problems is to embed them in the whole space. This is achieved by extending the solution to the other side of the surface in some suitable fashion, as we did in deriving the Poisson integral formula in Chapter 10. We then obtain a regular singular function that satisfies
发表于 2025-3-25 01:14:07 | 显示全部楼层
https://doi.org/10.1007/978-1-4613-8315-4ul method of attacking these problems is to embed them in the whole space. This is achieved by extending the solution to the other side of the surface in some suitable fashion, as we did in deriving the Poisson integral formula in Chapter 10. We then obtain a regular singular function that satisfies
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-24 06:49
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表