找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Extended Abstracts 2021/2022; Ghent Analysis and P Michael Ruzhansky,Karel Van Bockstal Book 2024 The Editor(s) (if applicable) and The Aut

[复制链接]
楼主: 脾气好
发表于 2025-3-23 11:08:54 | 显示全部楼层
发表于 2025-3-23 16:47:19 | 显示全部楼层
https://doi.org/10.1007/978-981-10-6150-9hed. Actually, we obtain weighted critical Sobolev-type identities. Furthermore, anisotropic versions of these identities with any homogeneous quasi-norm are presented. Finally, we discuss hypoelliptic versions of these results in the setting of stratified Lie groups.
发表于 2025-3-23 20:54:25 | 显示全部楼层
发表于 2025-3-23 22:58:46 | 显示全部楼层
Pointwise Domination and Weak , Boundedness of Littlewood-Paley Operators via Sparse Operators3, 2014; Theorem 1.1) is quite short and, unlike the original proof, does not rely on the properties of the “Marcinkiewicz function”. This allows us to get a precise linear dependence on Dini constants with a subsequent application to Littlewood–Paley operators by the well-known techniques.
发表于 2025-3-24 05:40:53 | 显示全部楼层
Boundedness of Fourier Multipliers on Graded Lie Groupsoperators on an arbitrary graded Lie group ., where . is the Hardy spaces on .. Our main result extends those obtained by Fischer and Ruzhansky (Colloq Math 165:1–30, 2021), who proved the . and ., ., boundedness of such Fourier multiplier operators.
发表于 2025-3-24 07:41:21 | 显示全部楼层
发表于 2025-3-24 13:09:40 | 显示全部楼层
-, Norms of Spectral Multipliersevant .-. norm estimates to spectral multipliers of left-invariant weighted subcoercive operators on unimodular Lie groups. In particular, this includes spectral multipliers of Laplacians, sub-Laplacians and Rockland operators. As an application, we obtain, e.g., time asymptotics for the .-. norms of the heat kernels and Sobolev-type embeddings.
发表于 2025-3-24 18:01:50 | 显示全部楼层
发表于 2025-3-24 21:09:51 | 显示全部楼层
978-3-031-42541-7The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
发表于 2025-3-25 01:01:22 | 显示全部楼层
Extended Abstracts 2021/2022978-3-031-42539-4Series ISSN 2297-0215 Series E-ISSN 2297-024X
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-12 19:03
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表