找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Extended Abstracts 2021/2022; Ghent Analysis and P Michael Ruzhansky,Karel Van Bockstal Book 2024 The Editor(s) (if applicable) and The Aut

[复制链接]
楼主: 脾气好
发表于 2025-3-28 17:08:48 | 显示全部楼层
发表于 2025-3-28 19:49:14 | 显示全部楼层
https://doi.org/10.1057/9780230115477utline of Fourier analysis on fundamental domains, then use interpolation techniques to obtain some inequalities and conclude with a Hörmander-type boundedness theorem. At the end, I present some current research perspectives.
发表于 2025-3-29 02:05:24 | 显示全部楼层
发表于 2025-3-29 03:24:58 | 显示全部楼层
Sentencing: Reflecting on Words and Worlds,yal Society of Edinburgh Section A: Mathematics, 153(5), 1729–1750, 2022. .) wherein we have investigated the ., ., boundedness of Fourier multiplier operators on an arbitrary graded Lie group ., where . is the Hardy spaces on .. Our main result extends those obtained by Fischer and Ruzhansky (Collo
发表于 2025-3-29 07:23:16 | 显示全部楼层
发表于 2025-3-29 11:56:06 | 显示全部楼层
Fiction, Meaning and Utterance,es, 2022. arXiv:2212.08843) with E. Karimov and M. Ruzhansky. More specifically, we give the definitions and the main properties of the Prabhakar fractional .-integral and .-differential operators. More precisely, we present the semigroup property of the Prabhakar fractional .-integral operator, whi
发表于 2025-3-29 18:01:12 | 显示全部楼层
https://doi.org/10.1007/978-3-031-27605-7tiplier and pseudo-differential operators theories in the classical setting. Then, we discuss multiplier results in symmetric space and their similarity and distinction with the corresponding results in Euclidean spaces. Finally, using the Helgason inversion formula, we define the pseudo-differentia
发表于 2025-3-29 22:34:53 | 显示全部楼层
发表于 2025-3-30 03:40:07 | 显示全部楼层
发表于 2025-3-30 05:30:04 | 显示全部楼层
A Fresh Look on Neonatal Imitation vector fields, as proved in the forthcoming paper (Abolarinwa, Nonlinear Anisotropic Picone Type Identities for General Vector Fields and Applications, Submitted). Furthermore, several applications, which range from Hardy-type inequalities to Liouville-type and Sturmian-type comparison principles t
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-12 19:05
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表