找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Explainable and Interpretable Models in Computer Vision and Machine Learning; Hugo Jair Escalante,Sergio Escalera,Marcel‘van Ger Book 2018

[复制链接]
楼主: infection
发表于 2025-3-23 12:21:08 | 显示全部楼层
Ahu Yazici Ayyildiz,Erdogan Koc provide easy-to-interpret rationales for their behavior—so that passengers, insurance companies, law enforcement, developers etc., can understand what triggered a particular behavior. Here, we explore the use of visual explanations. These explanations take the form of real-time highlighted regions
发表于 2025-3-23 15:59:29 | 显示全部楼层
发表于 2025-3-23 22:03:22 | 显示全部楼层
Miranda Giacomin,Christian H. Jordanticular, assessment of apparent personality gives insights into the first impressions evoked by a candidate. Such analysis tools can be used for training purposes, if they can be configured to provide appropriate and clear feedback. In this chapter, we describe a multimodal system that analyzes a sh
发表于 2025-3-24 01:49:57 | 显示全部楼层
Essential Cerebrovascular Hemodynamics,man-machine interactions. Expressing the rationale behind such a system’s output is an important aspect of human-machine interaction as AI continues to be prominent in general, everyday use-cases. In this paper, we introduce a novel framework integrating Grenander’s pattern theory structures to prod
发表于 2025-3-24 04:16:07 | 显示全部楼层
Springer Nature Switzerland AG 2018
发表于 2025-3-24 10:00:30 | 显示全部楼层
Explainable and Interpretable Models in Computer Vision and Machine Learning978-3-319-98131-4Series ISSN 2520-131X Series E-ISSN 2520-1328
发表于 2025-3-24 13:37:22 | 显示全部楼层
发表于 2025-3-24 16:36:03 | 显示全部楼层
Learning Interpretable Rules for Multi-Label Classificationel data. Discussing this task in detail, we highlight some of the problems that make rule learning considerably more challenging for MLC than for conventional classification. While mainly focusing on our own previous work, we also provide a short overview of related work in this area.
发表于 2025-3-24 22:47:39 | 显示全部楼层
发表于 2025-3-25 01:26:50 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-24 21:09
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表