找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Explainable and Interpretable Models in Computer Vision and Machine Learning; Hugo Jair Escalante,Sergio Escalera,Marcel‘van Ger Book 2018

[复制链接]
楼主: infection
发表于 2025-3-28 15:10:17 | 显示全部楼层
Injazz J. Chen,Kenneth A. Paetschiscriminative than descriptions produced by existing captioning methods. In this work, we emphasize the importance of producing an explanation for an observed action, which could be applied to a black-box decision agent, akin to what one human produces when asked to explain the actions of a second h
发表于 2025-3-28 20:56:31 | 显示全部楼层
Daniel R. Williams,Norman McIntyrerowd-sourced human evaluation indicates that our ensemble visual explanation is significantly qualitatively outperform each of the individual system’s visual explanation. Overall, our ensemble explanation is better 61. of the time when compared to any individual system’s explanation and is also suff
发表于 2025-3-29 01:22:47 | 显示全部楼层
Ahu Yazici Ayyildiz,Erdogan Kocons actually influence the output. This produces more succinct visual explanations and more accurately exposes the network’s behavior. We demonstrate the effectiveness of our model on three datasets totaling 16 h of driving. We first show that training with attention does not degrade the performance
发表于 2025-3-29 04:35:44 | 显示全部楼层
Derek L. Milne,Robert P. Reiserf a data-driven job candidate assessment system, intended to be explainable towards non-technical hiring specialists. In connection to this, we also give an overview of more traditional job candidate assessment approaches, and discuss considerations for optimizing the acceptability of technology-sup
发表于 2025-3-29 09:08:18 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-25 00:29
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表