找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Explainable Machine Learning in Medicine; Karol Przystalski,Rohit M. Thanki Book 2024 The Editor(s) (if applicable) and The Author(s), und

[复制链接]
楼主: GOLF
发表于 2025-3-23 11:14:08 | 显示全部楼层
发表于 2025-3-23 17:42:07 | 显示全部楼层
Book 2024sis desired. Because a variety of data can be used in the medical field, the book explains how to deal with challenges connected with each type. A number of scenarios are introduced that can happen in real-time environments, with each pared with a type of machine learning that can be used to solve it..
发表于 2025-3-23 20:55:22 | 显示全部楼层
发表于 2025-3-24 02:02:09 | 显示全部楼层
发表于 2025-3-24 05:24:08 | 显示全部楼层
发表于 2025-3-24 08:12:58 | 显示全部楼层
发表于 2025-3-24 13:50:57 | 显示全部楼层
发表于 2025-3-24 15:23:13 | 显示全部楼层
Handbook of Spectral Lines in Diamondsimple example of this type of data. We have the weight, age, and height values divided by the person to which they are assigned. Such data might be too simple to be used with a deep neural network or even most shallow methods, but we can use methods such as linear regression to see the correlation
发表于 2025-3-24 20:02:21 | 显示全部楼层
发表于 2025-3-25 02:43:33 | 显示全部楼层
https://doi.org/10.1007/978-981-16-3679-0he medical diagnostics on a daily basis. The most typical are X-ray and ultrasound scans. Some General Practitioners have a dermatoscope to take pictures of the skin. Similarly, thermography can be used to take kind of heatmap images of our body. If the diagnosis of a disease is more complex, magnet
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-7-2 23:21
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表