找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Explainable Machine Learning in Medicine; Karol Przystalski,Rohit M. Thanki Book 2024 The Editor(s) (if applicable) and The Author(s), und

[复制链接]
查看: 30498|回复: 37
发表于 2025-3-21 19:56:09 | 显示全部楼层 |阅读模式
书目名称Explainable Machine Learning in Medicine
编辑Karol Przystalski,Rohit M. Thanki
视频video
概述Provides a primer on explainable artificial intelligence and machine learning methods that can be used in medical cases.Presents how explainable AI aids in choosing ML algorithms that give better perf
丛书名称Synthesis Lectures on Engineering, Science, and Technology
图书封面Titlebook: Explainable Machine Learning in Medicine;  Karol Przystalski,Rohit M. Thanki Book 2024 The Editor(s) (if applicable) and The Author(s), und
描述This book covers a variety of advanced communications technologies that can be used to analyze medical data and can be used to diagnose diseases in clinic centers. The book is a primer of methods for medicine, providing an overview of explainable artificial intelligence (AI) techniques that can be applied in different medical challenges. The authors discuss how to select and apply the proper technology depending on the provided data and the analysis desired. Because a variety of data can be used in the medical field, the book explains how to deal with challenges connected with each type. A number of scenarios are introduced that can happen in real-time environments, with each pared with a type of machine learning that can be used to solve it..
出版日期Book 2024
关键词Explainable Machine Learning; Medical Machine Learning; Medicine Artificial Intelligence; Medical Data
版次1
doihttps://doi.org/10.1007/978-3-031-44877-5
isbn_softcover978-3-031-44879-9
isbn_ebook978-3-031-44877-5Series ISSN 2690-0300 Series E-ISSN 2690-0327
issn_series 2690-0300
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

书目名称Explainable Machine Learning in Medicine影响因子(影响力)




书目名称Explainable Machine Learning in Medicine影响因子(影响力)学科排名




书目名称Explainable Machine Learning in Medicine网络公开度




书目名称Explainable Machine Learning in Medicine网络公开度学科排名




书目名称Explainable Machine Learning in Medicine被引频次




书目名称Explainable Machine Learning in Medicine被引频次学科排名




书目名称Explainable Machine Learning in Medicine年度引用




书目名称Explainable Machine Learning in Medicine年度引用学科排名




书目名称Explainable Machine Learning in Medicine读者反馈




书目名称Explainable Machine Learning in Medicine读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 20:42:44 | 显示全部楼层
Medical Tabular Data,simple example of this type of data. We have the weight, age, and height values divided by the person to which they are assigned. Such data might be too simple to be used with a deep neural network or even most shallow methods, but we can use methods such as linear regression to see the correlation
发表于 2025-3-22 02:08:11 | 显示全部楼层
,Natural Language Processing for Medical Data Analysis,ledge and the terms that in the case of medicine can be in Latin. This means that most of the publicly available language models are not trained to recognize the medical terms. For each NLP exercise, most of the models are developed in English.
发表于 2025-3-22 05:03:23 | 显示全部楼层
,Computer Vision for Medical Data Analysis,he medical diagnostics on a daily basis. The most typical are X-ray and ultrasound scans. Some General Practitioners have a dermatoscope to take pictures of the skin. Similarly, thermography can be used to take kind of heatmap images of our body. If the diagnosis of a disease is more complex, magnet
发表于 2025-3-22 09:45:38 | 显示全部楼层
发表于 2025-3-22 14:07:03 | 显示全部楼层
发表于 2025-3-22 18:52:19 | 显示全部楼层
发表于 2025-3-22 22:40:04 | 显示全部楼层
Critique as a Notion of Spiritualityn observe how the observed organ changes its behavior over time, making it possible to recognize different types of anomalies or diseases compared to data captured in one time, such as typical MRI scans.
发表于 2025-3-23 01:41:19 | 显示全部楼层
发表于 2025-3-23 06:48:10 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-16 06:22
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表