找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Evolution Inclusions and Variation Inequalities for Earth Data Processing III; Long-Time Behavior o Mikhail Z. Zgurovsky,Pavlo O. Kasyanov,

[复制链接]
楼主: 警察在苦笑
发表于 2025-3-23 13:00:05 | 显示全部楼层
发表于 2025-3-23 15:36:59 | 显示全部楼层
发表于 2025-3-23 20:09:59 | 显示全部楼层
发表于 2025-3-24 02:01:14 | 显示全部楼层
发表于 2025-3-24 06:23:38 | 显示全部楼层
Auxiliary Properties of Evolution Inclusions Solutions for Earth Data Processingnlinear mathematical models of evolution processes and fields of different nature, in particular, problems deal with the dynamics of solutions of non-stationary problems. Far from complete list of results concern the given direction is in works [4, 5, 7, 9–17, 19].
发表于 2025-3-24 08:34:26 | 显示全部楼层
Attractors for Lattice Dynamical Systems. In this chapter, we study the asymptotic behavior of the solutions of a system of infinite ordinary differential equations (a lattice dynamical system) obtained after the spacial discretization of a system of reaction-diffusion equations in an unbounded domain. This kind of dynamical systems is th
发表于 2025-3-24 13:02:41 | 显示全部楼层
On Global Attractors of Multivalued Semiprocesses and Nonautonomous Evolution Inclusionsis nonautonomous, new and challenging difficulties appear. In this case, if uniqueness of the Cauchy problem holds, then the usual semigroup of operators becomes a two-parameter semigroup or process [38, 39], as we have to take into account the initial and the final time of the solutions.
发表于 2025-3-24 18:45:04 | 显示全部楼层
Pullback Attractors for a Class of Extremal Solutions of the 3D Navier–Stokes System is still far to be solved in a satisfactory way. In particular, the existence of a global attractor in the strong topology is an open problem for which only some partial or conditional results are given (see [3, 4, 6, 15, 17, 19, 20, 27, 38]). Concerning the existence of trajectory attractors, some
发表于 2025-3-24 21:50:32 | 显示全部楼层
发表于 2025-3-24 23:31:20 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-12 11:43
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表