找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Eta Products and Theta Series Identities; Günter Köhler Book 2011 Springer-Verlag Berlin Heidelberg 2011 11-02, 11F20, 11F27, 11R11.Eisens

[复制链接]
楼主: 自治
发表于 2025-3-30 09:31:27 | 显示全部楼层
发表于 2025-3-30 12:26:41 | 显示全部楼层
发表于 2025-3-30 18:40:57 | 显示全部楼层
发表于 2025-3-30 21:06:09 | 显示全部楼层
Curriculum and the Life Erratic .(.). is a cuspidal eta product of level . and weight . for every .|. and every (integral or half-integral) .>0, the half lines from the origin through the standard unit vectors belong to the interior of .. Therefore, the first octant {.=(..).∈ℝ.∣.≠0, ..≥0 for all .|.} belongs to the interior of ..
发表于 2025-3-31 04:30:19 | 显示全部楼层
发表于 2025-3-31 05:59:19 | 显示全部楼层
Liang See Tan,Keith Chiu Kian Tangeneralization both of Dirichlet’s .-series and of Dedekind’s zeta functions. While Dirichlet’s .-series are defined by characters on the rational integers, Hecke’s .-functions involve characters on the integral ideals of algebraic number fields. The values of these characters at principal ideals de
发表于 2025-3-31 12:19:10 | 显示全部楼层
发表于 2025-3-31 15:12:01 | 显示全部楼层
https://doi.org/10.1057/9780230105744.2 we obtained series expansions for four of these functions. In a closing remark in Sect. 3.6 we explained that these expansions are simple theta series for the rational number field with Dirichlet characters. Now we derive similar expansions for the remaining two eta products
发表于 2025-3-31 17:43:16 | 显示全部楼层
https://doi.org/10.1007/978-3-030-48822-2e’s pioneering research (Hecke in Lectures on Dirichlet Series, Modular Functions and Quadratic Forms, Vandenhoeck & Ruprecht, Göttingen, .), but merely since three of them are conjugate to Fricke groups: Besides the modular group .(1)=Γ. itself, we have . The Hecke group .(2) is also called the . s
发表于 2025-4-1 01:03:26 | 显示全部楼层
Spoken Transgression and the Courts,on-cuspidal. Here we have an illustration for Theorem 3.9 (3): The lattice points on the boundary of the simplex .(2,1) do not belong to .(3,1), and two of the interior lattice points in .(2,1) are on the boundary of .(3,1). At this point it becomes clear that .(.).(.) is the only holomorphic eta pr
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-23 23:35
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表