找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Eta Products and Theta Series Identities; Günter Köhler Book 2011 Springer-Verlag Berlin Heidelberg 2011 11-02, 11F20, 11F27, 11R11.Eisens

[复制链接]
楼主: 自治
发表于 2025-3-23 11:54:36 | 显示全部楼层
发表于 2025-3-23 16:54:31 | 显示全部楼层
发表于 2025-3-23 19:12:22 | 显示全部楼层
Prime levels ,=,≥5Koninkl. Nederl. Akad. Wetensch. 55:498–503, .) and Schoeneberg (Koninkl. Nederl. Akad. Wetensch. 70:177–182, .). For .=5 and .=7 theta series identities involving real quadratic fields are known from (Kac and Peterson in Adv. Math. 53:125–264, .), (Hiramatsu in Investigations in Number Theory. Advanced Studies in Pure Math. 13:503–584, .).
发表于 2025-3-24 01:39:56 | 显示全部楼层
An Algorithm for Listing Lattice Points in a Simplexic eta products of a given level . and weight .. The results in Sect. 3 say that we get this list when we list up all the lattice points in a certain compact simplex. Every single lattice point represents an interesting function, and we really need such a list.
发表于 2025-3-24 04:28:09 | 显示全部楼层
发表于 2025-3-24 07:45:23 | 显示全部楼层
发表于 2025-3-24 14:04:09 | 显示全部楼层
https://doi.org/10.1007/978-3-030-48822-2ince Jacobi’s .(.) is a modular form for .(2). Several of the results in Sects. 10, 11 and 13 are transcriptions of earlier research (Köhler in Abh. Math. Sem. Univ. Hamburg 55, 75–89, .), (Köhler in Math. Z. 197, 69–96, .), (Köhler in Abh. Math. Sem. Univ. Hamburg 58, 15–45, .) on theta series on these three Hecke groups.
发表于 2025-3-24 18:14:39 | 显示全部楼层
Spoken Transgression and the Courts,oduct of level . and weight 1 for primes .≥5. The eta product .(.).(3.) is identified with a Hecke theta series for .; the result (11.2) is known from (Dummit et al. in Finite Groups—Coming of Age. Contemp. Math. 45, 89–98, .), (Köhler in Math. Z. 197, 69–96, .).
发表于 2025-3-24 19:31:05 | 显示全部楼层
Dedekind’s Eta Function and Modular Forms disc or, equivalently, for . in the . ℍ={.∈ℂ∣Im(.)>0}. This means that the product of the absolute values |1−..| converges uniformly for . in every compact subset of ℍ. The normal convergence of the product implies that . is a holomorphic function on ℍ and that .(.)≠0 for all .∈ℍ.
发表于 2025-3-25 02:45:10 | 显示全部楼层
Eta Productss from ℤ, positive or negative or 0. (Of course, an exponent 0 contributes a trivial factor 1 to the product, and therefore we may as well assume that ..≠0 for all ..) Since the product is finite, the lowest common multiple .=lcm {.} exists, and every . divides ..
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-23 22:59
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表