找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Elements of the Theory of Representations; Aleksandr A. Kirillov Book 1976 Springer-Verlag Berlin Heidelberg 1976 Darstellung.Group repres

[复制链接]
楼主: 反抗日本
发表于 2025-3-25 07:09:36 | 显示全部楼层
Jaspreet Kaur,Manishi Mukesh,Akshay AnandWe have already stated . that the term “representation” in the wide sense means a homomorphism of the group . into the group of one-to-one mappings of a certain set . onto itself.,A representation . is called . if . is a linear space and the mappings . are linear operators.
发表于 2025-3-25 11:13:09 | 显示全部楼层
https://doi.org/10.1007/978-3-319-07944-8One of the principal problems of the theory of representations is the problem of decomposing representations of a group . into the simplest possible components.
发表于 2025-3-25 14:59:29 | 显示全部楼层
The Gerasimov-Drell-Hearn sum rule at MAMILet G be a finite group. We denote by .[.] the set of all formal linear combinations of elements of G with integer coefficients. In .[.] we define the operations of addition and multiplication in a quite natural way:..
发表于 2025-3-25 17:21:37 | 显示全部楼层
Pedagogical Love and Good TeacherhoodBy the character of a finite-dimensional representation T of a group G, we mean the function
发表于 2025-3-25 22:51:23 | 显示全部楼层
发表于 2025-3-26 03:23:12 | 显示全部楼层
发表于 2025-3-26 06:34:45 | 显示全部楼层
S. Mazevet,J. Berakdar,J. Lower,E. WeigoldConsider a geometric body which casts a shadow of constant area when illuminated by parallel rays from an arbitrary direction. Can one infer that the body is a sphere?
发表于 2025-3-26 12:16:42 | 显示全部楼层
发表于 2025-3-26 15:38:14 | 显示全部楼层
发表于 2025-3-26 17:31:38 | 显示全部楼层
Groups and Homogeneous SpacesA . is a nonvoid set . of mappings of a certain set . onto itself with the following properties:
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 吾爱论文网 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
QQ|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-8-10 14:46
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表