找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Elements of the Theory of Representations; Aleksandr A. Kirillov Book 1976 Springer-Verlag Berlin Heidelberg 1976 Darstellung.Group repres

[复制链接]
楼主: 反抗日本
发表于 2025-3-23 21:56:51 | 显示全部楼层
The Method of Orbitsclosely connected with a certain special finite-dimensional representation of this group. This representation acts in the dual space {{g}}* of the Lie algebra {{g}} of the group under study. We will call it a [[co-adjoint]] or briefly a [[K-representation]]
发表于 2025-3-24 00:01:20 | 显示全部楼层
发表于 2025-3-24 05:36:30 | 显示全部楼层
发表于 2025-3-24 08:07:39 | 显示全部楼层
发表于 2025-3-24 11:07:42 | 显示全部楼层
https://doi.org/10.1007/978-1-349-02154-3Proofs of the facts given in this section, along with more information, can be found in the textbook of S. Lang [39] and also in the treatise of N. Bourbaki [6].
发表于 2025-3-24 15:18:40 | 显示全部楼层
发表于 2025-3-24 22:43:08 | 显示全部楼层
https://doi.org/10.1007/978-981-13-3372-9Sets with structure locally like Euclidean spaces are called manifolds. This property enables us to introduce local systems of coordinates on manifolds and to employ the apparatus of mathematical analysis. A precise definition of manifold follows.
发表于 2025-3-25 01:34:36 | 显示全部楼层
https://doi.org/10.1007/978-3-031-57683-6A set G is called a Lie group if it is a topological group and a smooth manifold for which the mapping ., given by φ(.)=. is smooth.
发表于 2025-3-25 07:09:36 | 显示全部楼层
Jaspreet Kaur,Manishi Mukesh,Akshay AnandWe have already stated . that the term “representation” in the wide sense means a homomorphism of the group . into the group of one-to-one mappings of a certain set . onto itself.,A representation . is called . if . is a linear space and the mappings . are linear operators.
发表于 2025-3-25 11:13:09 | 显示全部楼层
https://doi.org/10.1007/978-3-319-07944-8One of the principal problems of the theory of representations is the problem of decomposing representations of a group . into the simplest possible components.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-2 08:32
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表