找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Elementary Topics in Differential Geometry; J. A. Thorpe Textbook 1979 Springer-Verlag New York Inc. 1979 Differentialgeometrie.Isometrie.

[复制链接]
楼主: cobble
发表于 2025-3-26 22:59:16 | 显示全部楼层
发表于 2025-3-27 01:53:21 | 显示全部楼层
Living with Wildlife in Zimbabweigure 15-6). When . = 0, ϕ. = ϕ is a parametrized .-surface in ℝ... For . ≠ 0. however, ϕ. may fail to be a parametrized .-surface because there may be points . ∈ . at which ϕ. fails to be regular. At each such point there will be a direction . such that .. If α is a parametrized curve in . with .,
发表于 2025-3-27 06:57:33 | 显示全部楼层
We begin by using a technique of the calculus of variations analogous to the one we used in Chapter 18 to study minimal surfaces. Now, however, we shall vary parametrized curves rather than parametrized surfaces
发表于 2025-3-27 10:26:25 | 显示全部楼层
发表于 2025-3-27 15:04:50 | 显示全部楼层
Elementary Topics in Differential Geometry978-1-4612-6153-7Series ISSN 0172-6056 Series E-ISSN 2197-5604
发表于 2025-3-27 18:40:48 | 显示全部楼层
,Treatment 1—Therapeutic Materials,r transformation on the 1-dimensional spacc .. Sincc every linear transformation from a 1-dimensional space to itself is multiplication by a real number, there exists, for each . ∈ ., a real number .(p) such that .. K(.) is called the . of . at ..
发表于 2025-3-28 01:01:00 | 显示全部楼层
Living with Nature, Cherishing Languageeasures the turning of the normal as one moves in S through . with various velocities .. Thus . measures the way . curves in ℝ.. at .. For . = 1, we have seen that . is just multiplication by a number .(p) the curvature of . at .. We shall now analyze . when . > 1.
发表于 2025-3-28 06:01:03 | 显示全部楼层
https://doi.org/10.1007/978-1-4615-8744-6ee Figure 13.1). An oriented .-surface . is . at . ∈ . if there exists an open set . ⊂ ℝ.. containing . such that . ∩ . is contained either in . or in .. Thus a convex .-surface is necessarily convex at each of its points, but an .-surface convex at each point need not be a convex .-surface (see Figure 13.2).
发表于 2025-3-28 10:18:39 | 显示全部楼层
发表于 2025-3-28 13:47:22 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-20 06:24
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表