找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Elementary Topics in Differential Geometry; J. A. Thorpe Textbook 1979 Springer-Verlag New York Inc. 1979 Differentialgeometrie.Isometrie.

[复制链接]
楼主: cobble
发表于 2025-3-30 10:23:09 | 显示全部楼层
Clotting Factor Antibodies (Inhibitors),We shall now consider the local behavior of curvature on an .-surface. The way in which an .-surface curves around in ℝ.. is measured by the way the normal direction changes as we move from point to point on the surfacc. In order to measure the rate of changc of the normal direction, we need to be able to differentiate vector fields on .-surfaces.
发表于 2025-3-30 12:49:56 | 显示全部楼层
发表于 2025-3-30 16:56:26 | 显示全部楼层
https://doi.org/10.1007/978-1-4614-3752-9In this chapter we shall establish two theorems which show that, locally, .-surfaces and parametrized .-surfaces are the same. In order to do this, we will need to use the following theorem from the calculus of several variables.
发表于 2025-3-30 23:43:50 | 显示全部楼层
Dale Salwak (Professor of English)We consider now the problem of how to find the volume (area when . = 2) of an .-surface in ℝ... As with the length of plane curves, this is done in two steps. First we define the volume of a parametrized .-surface and then we define the volume of an .-surface in terms of local parametrizations.
发表于 2025-3-31 01:19:54 | 显示全部楼层
Haemodialysis — a personal viewpointLet ϕ: . → ℝ.. be a parametrized .-surface in ℝ... A . of ϕ is a smooth map .: . x (−ɛ, ɛ) → ℝ.. with the property that .(.,0) = ϕ(.) for all . ∈ .. Thus a variation surrounds the .-surface ϕ with a family of singular .-surfaces ϕ.: . → ℝ.. (−ɛ < ɛ < ɛ) defined by ϕ . (.) = .(., .).
发表于 2025-3-31 06:18:00 | 显示全部楼层
Vector Fields,The tool which will allow us to study the geometry of level sets is the calculus of vector fields. In this chapter we develop some of the basic ideas.
发表于 2025-3-31 09:16:40 | 显示全部楼层
发表于 2025-3-31 13:37:37 | 显示全部楼层
发表于 2025-3-31 19:39:18 | 显示全部楼层
发表于 2025-4-1 00:53:49 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-20 09:47
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表