找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Effective Statistical Learning Methods for Actuaries I; GLMs and Extensions Michel Denuit,Donatien Hainaut,Julien Trufin Textbook 2019 Spri

[复制链接]
楼主: 鸟场
发表于 2025-3-26 23:23:01 | 显示全部楼层
发表于 2025-3-27 01:14:39 | 显示全部楼层
发表于 2025-3-27 08:36:32 | 显示全部楼层
,Das Reichselektrizitätsmonopol,y results in correlation among the responses within the same group, casting doubts about the outputs of analyses assuming mutual independence. Random effects offer a convenient way to model such grouping structure. This chapter presents the Generalized Linear Mixed Model (GLMM) approach to regressio
发表于 2025-3-27 09:50:02 | 显示全部楼层
,Die Landes-Versicherungsämter,eatures coded by means of binary variables. However, this assumption becomes questionable for continuous features which may have a nonlinear effect on the score scale. This chapter is devoted to Generalized Additive Models (GAMs) which keep the additive decomposition of the score but allow the actua
发表于 2025-3-27 16:42:27 | 显示全部楼层
https://doi.org/10.1007/978-3-642-94474-1ion, scale, shape or probability mass at the origin, for instance. This allows the actuary to let the available information enter other dimensions of the response, such as volatility or no-claim probability. The double GLM setting supplements GLMs with dispersion modeling, letting the dispersion par
发表于 2025-3-27 20:47:19 | 显示全部楼层
发表于 2025-3-27 22:13:58 | 显示全部楼层
发表于 2025-3-28 04:46:49 | 显示全部楼层
发表于 2025-3-28 06:18:43 | 显示全部楼层
Springer Actuarialhttp://image.papertrans.cn/e/image/302810.jpg
发表于 2025-3-28 12:48:42 | 显示全部楼层
Effective Statistical Learning Methods for Actuaries I978-3-030-25820-7Series ISSN 2523-3262 Series E-ISSN 2523-3270
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-22 00:50
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表