找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Data-Driven Clinical Decision-Making Using Deep Learning in Imaging; M. F. Mridha,Nilanjan Dey Book 2024 The Editor(s) (if applicable) and

[复制链接]
楼主: TUMOR
发表于 2025-3-23 13:05:12 | 显示全部楼层
发表于 2025-3-23 17:26:06 | 显示全部楼层
发表于 2025-3-23 21:01:52 | 显示全部楼层
发表于 2025-3-24 00:11:11 | 显示全部楼层
发表于 2025-3-24 03:27:32 | 显示全部楼层
发表于 2025-3-24 07:00:25 | 显示全部楼层
发表于 2025-3-24 11:22:37 | 显示全部楼层
Eisen(II)-hydrocarbonat Fe(HCO3)2,the gradient problem, resulting in an optimized and efficient training process. Our proposed model outperformed all existing models including the SOTA model, with an accuracy of 89.95%, precision of 91.42%, recall of 88.84%, F1 of 89.68%, and specificity of 95.98%.
发表于 2025-3-24 16:32:36 | 显示全部楼层
发表于 2025-3-24 23:05:04 | 显示全部楼层
,Advancing Brain Tumour Detection: Transfer Learning-Based Approach Fused with Squeeze-and-Excitatioenchmarked with the previous seven state-of-the-art (SOTA) models on the same dataset. Our proposed techniques obtained the best results for both the validation and testing datasets. On the validation data of the MRI brain tumour, we achieved the highest results, with an accuracy of 95.92%, precision of 95.89%, recall of 95.24% and AUC of 99.00%.
发表于 2025-3-25 02:22:18 | 显示全部楼层
Enhancing Breast Cancer Detection Systems: Augmenting Mammogram Images Using Generative Adversarialbuted to the labor-intensive curation and labeling of images, coupled with privacy concerns, serves as a driving force behind investigating GANs as a potential solution. This exploration aims to address the challenge of obtaining a more extensive and diverse dataset, essential for the robust training of breast cancer detection systems.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-15 19:24
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表