找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Data-Driven Clinical Decision-Making Using Deep Learning in Imaging; M. F. Mridha,Nilanjan Dey Book 2024 The Editor(s) (if applicable) and

[复制链接]
楼主: TUMOR
发表于 2025-3-28 18:04:08 | 显示全部楼层
发表于 2025-3-28 21:39:54 | 显示全部楼层
发表于 2025-3-29 01:24:13 | 显示全部楼层
发表于 2025-3-29 06:51:52 | 显示全部楼层
发表于 2025-3-29 10:40:08 | 显示全部楼层
发表于 2025-3-29 13:21:51 | 显示全部楼层
Privacy-Preserving Vision-Based Detection of Pox Diseases Using Federated Learning,tential of federated learning to revolutionize disease diagnosis while preserving individual confidentiality. This research contributes to enhancing disease management and underscores the significance of privacy-aware healthcare technologies.
发表于 2025-3-29 16:37:27 | 显示全部楼层
,Unveiling the Unique Dermatological Signatures of Human Pox Diseases Through Deep Transfer Learningn human monkeypox, chickenpox, cowpox, measles, normal and hand-mouth face disease. Finally, our proposed model resulted in a test accuracy of 0.90, a precision of 0.89, a recall of 0.91, and an F1 score of 0.90, which significantly outperformed all other models, avoided common skin problems and exp
发表于 2025-3-29 20:53:06 | 显示全部楼层
,Improved Classification of Kidney Lesions in CT Scans Using CNN with Attention Layers: Achieving Hi exceptional performance. With a remarkable accuracy percentage of 97.98%, and average precision, detection, and F1 score of 98%. The accuracy and performance metrics attained demonstrate the efficacy and promise of the suggested method in aiding healthcare practitioners in the preliminary evaluatio
发表于 2025-3-30 03:32:34 | 显示全部楼层
,Advancing Breast Cancer Diagnosis: Attention-Enhanced U-Net for Breast Cancer Segmentation,significant potential for augmenting accuracy and resilience in analyzing medical images related to various organs. This is achieved by providing a mechanism to assimilate specialized knowledge tailored to specific tasks within deep learning frameworks. Additionally, our comparative analysis against
发表于 2025-3-30 05:46:06 | 显示全部楼层
,Privacy Preserving Breast Cancer Prediction with Mammography Images Using Federated Learning,ographic data may lead to precision medicine. The goal is to improve patient quality of life, reduce mortality, and enhance early detection. With a dataset of four classes and 6,649 images, the model achieves 72.46% accuracy, laying the foundation for advanced privacy-preserving risk prediction mode
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-15 19:56
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表