找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Driving Scientific and Engineering Discoveries Through the Convergence of HPC, Big Data and AI; 17th Smoky Mountains Jeffrey Nichols,Becky

[复制链接]
楼主: 螺丝刀
发表于 2025-3-23 13:33:57 | 显示全部楼层
发表于 2025-3-23 14:34:09 | 显示全部楼层
发表于 2025-3-23 19:53:15 | 显示全部楼层
发表于 2025-3-24 00:26:15 | 显示全部楼层
Automated Integration of Continental-Scale Observations in Near-Real Time for Simulation and Analysirvations that will operate for multiple decades. To maximize the utility of NEON data, we envision edge computing systems that gather, calibrate, aggregate, and ingest measurements in an integrated fashion. Edge systems will employ machine learning methods to cross-calibrate, gap-fill and provision
发表于 2025-3-24 05:17:50 | 显示全部楼层
发表于 2025-3-24 06:47:10 | 显示全部楼层
Unsupervised Anomaly Detection in Daily WAN Traffic Patternss of observed traffic. Network providers need intelligent solutions that can help quickly identify and understand anomalous behaviors at the network edge, allowing reactions to unexpected traffic or attacks on facilities and their peerings. However, due to lack of labeled data in network traffic ana
发表于 2025-3-24 12:26:53 | 显示全部楼层
1865-0929 tation: on the road to a converged ecosystem; scientific data challenges..*The conference was held virtually due to the COVID-19 pandemic..978-3-030-63392-9978-3-030-63393-6Series ISSN 1865-0929 Series E-ISSN 1865-0937
发表于 2025-3-24 17:29:34 | 显示全部楼层
发表于 2025-3-24 22:03:40 | 显示全部楼层
Christoph Hönnige,Sascha Kneip,Astrid Lorenzdata pipelines from multiple months of network flow records. Once trained, individual classifiers quickly observe and flag alerts in hourly behaviors. Our work describes building the data pipeline as well as addressing issues of false positives and workflow integration.
发表于 2025-3-24 23:12:42 | 显示全部楼层
Performance Improvements on SNS and HFIR Instrument Data Reduction Workflows Using Mantidduction workflows. We propose a more disruptive domain-specific solution: the No Cost Input Output (NCIO) framework, we provide an overview, the risks and challenges in NCIO’s adoption by HFIR and SNS stakeholders.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-22 16:51
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表