找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Domain Adaptation in Computer Vision Applications; Gabriela Csurka Book 2017 Springer International Publishing AG 2017 Computer Vision.Vis

[复制链接]
楼主: 归纳
发表于 2025-3-28 15:03:16 | 显示全部楼层
发表于 2025-3-28 20:53:25 | 显示全部楼层
发表于 2025-3-29 00:21:33 | 显示全部楼层
https://doi.org/10.1007/978-3-031-34398-8rning and DA techniques, and we study their generalization properties to parts from unseen classes when they are learned from a limited number of domains and example images. One of our conclusions is that, for a majority of the domains, part annotations transfer well, and that, performance of the se
发表于 2025-3-29 03:12:43 | 显示全部楼层
Geodesic Flow Kernel and Landmarks: Kernel Methods for Unsupervised Domain Adaptation hand, we propose . of a kernel that discriminatively combines multiple base GFKs to model the source and the target domains at fine-grained granularities. In particular, each base kernel pivots on a different set of landmarks—the most useful data instances that reveal the similarity between the sou
发表于 2025-3-29 08:41:59 | 显示全部楼层
发表于 2025-3-29 12:31:13 | 显示全部楼层
Correlation Alignment for Unsupervised Domain Adaptationl but the number and dimensionality of target examples are very high. The resulting CORAL Linear Discriminant Analysis (CORAL-LDA)outperforms LDA by a large margin on standard domain adaptation benchmarks. Finally, we extend CORAL to learn a nonlinear transformation that aligns correlations of layer
发表于 2025-3-29 16:37:46 | 显示全部楼层
发表于 2025-3-29 23:31:45 | 显示全部楼层
发表于 2025-3-30 00:12:55 | 显示全部楼层
发表于 2025-3-30 07:55:58 | 显示全部楼层
Generalizing Semantic Part Detectors Across Domainsrning and DA techniques, and we study their generalization properties to parts from unseen classes when they are learned from a limited number of domains and example images. One of our conclusions is that, for a majority of the domains, part annotations transfer well, and that, performance of the se
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-12 15:15
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表