找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Domain Adaptation in Computer Vision Applications; Gabriela Csurka Book 2017 Springer International Publishing AG 2017 Computer Vision.Vis

[复制链接]
楼主: 归纳
发表于 2025-3-26 23:54:28 | 显示全部楼层
Unsupervised Fisher Vector Adaptation for Re-identificationthe unsupervised setting, i.e., when we do not have labeled data to adapt to the new conditions. Our focus in this work is on the Fisher Vector framework which has been shown to be a state-of-the-art patch encoding technique. Fisher Vectors primarily encode patch statistics by measuring first and se
发表于 2025-3-27 02:20:42 | 显示全部楼层
发表于 2025-3-27 08:01:46 | 显示全部楼层
发表于 2025-3-27 09:52:14 | 显示全部楼层
Generalizing Semantic Part Detectors Across Domains, indefinitely acquiring large amounts of annotations is not a sustainable process, and one can wonder if there exists a volume of annotations beyond which a task can be considered as solved or at least saturated. In this work, we study this crucial question for the task of . which are often seen as
发表于 2025-3-27 14:37:56 | 显示全部楼层
A Multisource Domain Generalization Approach to Visual Attribute Detectionmage retrieval. Whereas the existing work mainly pursues utilizing attributes for various computer vision problems, we contend that the most basic problem—how to accurately and robustly detect attributes from images—has been left underexplored. Especially, the existing work rarely explicitly tackles
发表于 2025-3-27 19:26:20 | 显示全部楼层
发表于 2025-3-27 22:45:59 | 显示全部楼层
Applications of UAVs in Search and Rescue hand, we propose . of a kernel that discriminatively combines multiple base GFKs to model the source and the target domains at fine-grained granularities. In particular, each base kernel pivots on a different set of landmarks—the most useful data instances that reveal the similarity between the sou
发表于 2025-3-28 03:16:05 | 显示全部楼层
发表于 2025-3-28 08:36:55 | 显示全部楼层
发表于 2025-3-28 11:17:31 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-12 14:39
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表