找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Domain Adaptation for Visual Understanding; Richa Singh,Mayank Vatsa,Nalini Ratha Book 2020 Springer Nature Switzerland AG 2020 Domain Ada

[复制链接]
楼主: 要求
发表于 2025-3-25 05:06:19 | 显示全部楼层
发表于 2025-3-25 08:56:45 | 显示全部楼层
XGAN: Unsupervised Image-to-Image Translation for Many-to-Many Mappings,ned embedding to preserve semantics shared across domains. We report promising qualitative results for the task of face-to-cartoon translation. The cartoon dataset we collected for this purpose, “CartoonSet”, is also publicly available as a new benchmark for semantic style transfer at ..
发表于 2025-3-25 13:28:42 | 显示全部楼层
发表于 2025-3-25 16:06:30 | 显示全部楼层
Cross-Modality Video Segment Retrieval with Ensemble Learning,te our method on the task of the video clip retrieval with the new proposed Distinct Describable Moments dataset. Extensive experiments have shown that our approach achieves improvement compared with the result of the state-of-art.
发表于 2025-3-25 21:56:57 | 显示全部楼层
发表于 2025-3-26 01:18:00 | 显示全部楼层
Adam Palmquist,Izabella Jedel,Ole Goetheth a two-stream Convolutional Neural Network (CNN). We demonstrate the ability of the proposed approach to achieve state-of-the-art performance for image classification on three benchmark domain adaptation datasets: Office-31 [.], Office-Home [.] and Office-Caltech [.].
发表于 2025-3-26 08:01:41 | 显示全部楼层
The Attainable Game Experience Frameworking function using unlabeled data. The mapping functions and feature representation are succinct and can be used to supplement any supervised or semi-supervised algorithm. The experiments on the CIFAR-10 database show challenging cases where intuition learning improves the performance of a given classifier.
发表于 2025-3-26 12:22:40 | 显示全部楼层
发表于 2025-3-26 16:08:31 | 显示全部楼层
On Minimum Discrepancy Estimation for Deep Domain Adaptation,th a two-stream Convolutional Neural Network (CNN). We demonstrate the ability of the proposed approach to achieve state-of-the-art performance for image classification on three benchmark domain adaptation datasets: Office-31 [.], Office-Home [.] and Office-Caltech [.].
发表于 2025-3-26 19:17:41 | 显示全部楼层
Intuition Learning,ing function using unlabeled data. The mapping functions and feature representation are succinct and can be used to supplement any supervised or semi-supervised algorithm. The experiments on the CIFAR-10 database show challenging cases where intuition learning improves the performance of a given classifier.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-8 04:21
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表