找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Domain Adaptation for Visual Understanding; Richa Singh,Mayank Vatsa,Nalini Ratha Book 2020 Springer Nature Switzerland AG 2020 Domain Ada

[复制链接]
查看: 47096|回复: 44
发表于 2025-3-21 17:46:06 | 显示全部楼层 |阅读模式
书目名称Domain Adaptation for Visual Understanding
编辑Richa Singh,Mayank Vatsa,Nalini Ratha
视频video
概述Presents the latest research on domain adaptation for visual understanding.Provides perspectives from an international selection of authorities in the field.Reviews a variety of applications and techn
图书封面Titlebook: Domain Adaptation for Visual Understanding;  Richa Singh,Mayank Vatsa,Nalini Ratha Book 2020 Springer Nature Switzerland AG 2020 Domain Ada
描述.This unique volume reviews the latest advances in domain adaptation in the training of machine learning algorithms for visual understanding, offering valuable insights from an international selection of experts in the field. The text presents a diverse selection of novel techniques, covering applications of object recognition, face recognition, and action and event recognition..Topics and features: reviews the domain adaptation-based machine learning algorithms available for visual understanding, and provides a deep metric learning approach; introduces a novel unsupervised method for image-to-image translation, and a video segment retrieval model that utilizes ensemble learning; proposes a unique way to determine which dataset is most useful in the base training, in order to improve the transferability of deep neural networks; describes a quantitative method for estimating the discrepancy between the source and target data to enhance image classification performance; presentsa technique for multi-modal fusion that enhances facial action recognition, and a framework for intuition learning in domain adaptation; examines an original interpolation-based approach to address the issue o
出版日期Book 2020
关键词Domain Adaptation; Machine Learning; Computer Vision; Representation Learning; Transfer Learning; Generat
版次1
doihttps://doi.org/10.1007/978-3-030-30671-7
isbn_softcover978-3-030-30673-1
isbn_ebook978-3-030-30671-7
copyrightSpringer Nature Switzerland AG 2020
The information of publication is updating

书目名称Domain Adaptation for Visual Understanding影响因子(影响力)




书目名称Domain Adaptation for Visual Understanding影响因子(影响力)学科排名




书目名称Domain Adaptation for Visual Understanding网络公开度




书目名称Domain Adaptation for Visual Understanding网络公开度学科排名




书目名称Domain Adaptation for Visual Understanding被引频次




书目名称Domain Adaptation for Visual Understanding被引频次学科排名




书目名称Domain Adaptation for Visual Understanding年度引用




书目名称Domain Adaptation for Visual Understanding年度引用学科排名




书目名称Domain Adaptation for Visual Understanding读者反馈




书目名称Domain Adaptation for Visual Understanding读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 21:09:52 | 显示全部楼层
发表于 2025-3-22 03:04:39 | 显示全部楼层
Book 2020cy between the source and target data to enhance image classification performance; presentsa technique for multi-modal fusion that enhances facial action recognition, and a framework for intuition learning in domain adaptation; examines an original interpolation-based approach to address the issue o
发表于 2025-3-22 06:21:20 | 显示全部楼层
发表于 2025-3-22 10:28:17 | 显示全部楼层
Multi-modal Conditional Feature Enhancement for Facial Action Unit Recognition,erformance. We apply our fusion method to the task of facial action unit (AU) recognition by learning to enhance the thermal and visible feature representations. We compare our approach to other recent fusion schemes and demonstrate its effectiveness on the MMSE dataset by outperforming previous tec
发表于 2025-3-22 14:47:51 | 显示全部楼层
sa technique for multi-modal fusion that enhances facial action recognition, and a framework for intuition learning in domain adaptation; examines an original interpolation-based approach to address the issue o978-3-030-30673-1978-3-030-30671-7
发表于 2025-3-22 19:49:36 | 显示全部楼层
发表于 2025-3-22 23:01:00 | 显示全部楼层
M-ADDA: Unsupervised Domain Adaptation with Deep Metric Learning,fy an unlabeled “target” dataset by leveraging a labeled “source” dataset that comes from a slightly similar distribution. We propose metric-based adversarial discriminative domain adaptation (M-ADDA) which performs two main steps. First, it uses a metric learning approach to train the source model
发表于 2025-3-23 02:40:17 | 显示全部楼层
发表于 2025-3-23 08:26:12 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-8 03:57
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表