找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Discrete and Computational Geometry; Japanese Conference, Jin Akiyama,Mikio Kano Conference proceedings 2003 Springer-Verlag Berlin Heidelb

[复制链接]
楼主: 乳钵
发表于 2025-3-30 12:12:28 | 显示全部楼层
发表于 2025-3-30 12:31:13 | 显示全部楼层
发表于 2025-3-30 20:26:20 | 显示全部楼层
发表于 2025-3-31 00:45:36 | 显示全部楼层
https://doi.org/10.1007/978-1-4757-2548-3n of their bars from an initial configuration to a “straight line segment,” preserving the length of each bar and not crossing any two bars. In this paper, we introduce a new class of linkages, called “radial trees,” and show that there exists a radial tree which can not be flattened.
发表于 2025-3-31 03:56:03 | 显示全部楼层
发表于 2025-3-31 05:55:34 | 显示全部楼层
发表于 2025-3-31 13:11:37 | 显示全部楼层
Non-Neoplastic Intestinal Disease. Our data structures are succinct using only .((1/.)log.(.)) bits of storage. We show that this is optimal by providing a matching lower bound showing that any data structure providing such an .-approximation requires at least Ω((1/.)log.(.)) bits of storage.
发表于 2025-3-31 16:47:08 | 显示全部楼层
https://doi.org/10.1007/978-1-4757-2548-3nsional faces, we prove that the description of . . given in [9] is complete with 1 550 825 000 vertices and that the . conjecture [16] holds for .≤ 8. Computational issues for the orbitwise face and vertex enumeration algorithms are also discussed.
发表于 2025-3-31 18:07:51 | 显示全部楼层
https://doi.org/10.1007/978-1-4757-2548-3dges . ∈ . such that . contains at least one node from each of {., ..., . − 1}, {., ..., . − 1} and {., ..., . − 1, 0, ..., . − 1 }. We show that for two hypergraphs . and .′ on ., the following two conditions are equivalent.
发表于 2025-3-31 22:18:17 | 显示全部楼层
On the Face Lattice of the Metric Polytope,nsional faces, we prove that the description of . . given in [9] is complete with 1 550 825 000 vertices and that the . conjecture [16] holds for .≤ 8. Computational issues for the orbitwise face and vertex enumeration algorithms are also discussed.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-24 21:47
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表