找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Discrete and Computational Geometry; Japanese Conference, Jin Akiyama,Mikio Kano Conference proceedings 2003 Springer-Verlag Berlin Heidelb

[复制链接]
楼主: 乳钵
发表于 2025-3-26 21:56:32 | 显示全部楼层
Non-neoplastic Intestinal DiseaseFor a planar . point set . in general position, a convex polygon of . is called empty if no point of . lies in its interior. We show that . can be always partitioned into at most ⌈9./34 ⌉ empty convex polygons and that ⌈(. + 1)/4 ⌉ empty convex polygons are occasionally necessary.
发表于 2025-3-27 03:17:23 | 显示全部楼层
https://doi.org/10.1007/978-1-4757-2548-3We introduce relaxed scheduling as a paradigm for mesh maintenance and demonstrate its applicability to triangulating a skin surface in ℝ..
发表于 2025-3-27 06:54:49 | 显示全部楼层
Non-neoplastic Intestinal DiseaseAn arrangement of . lines chosen at random from . . has a vertex set whose convex hull has constant (expected) size.
发表于 2025-3-27 13:26:32 | 显示全部楼层
Universal Measuring Devices with Rectangular Base,We consider a device with rectangular base having no gradations. We show that the number of directly measurable amounts of liquid using the device with its vertices as markers is always 13, independent of its shape. Then we show how the device can measure any integral amount of liquid between 1 and 858 liters.
发表于 2025-3-27 14:53:16 | 显示全部楼层
发表于 2025-3-27 20:20:01 | 显示全部楼层
Partitioning a Planar Point Set into Empty Convex Polygons,For a planar . point set . in general position, a convex polygon of . is called empty if no point of . lies in its interior. We show that . can be always partitioned into at most ⌈9./34 ⌉ empty convex polygons and that ⌈(. + 1)/4 ⌉ empty convex polygons are occasionally necessary.
发表于 2025-3-28 00:29:16 | 显示全部楼层
Relaxed Scheduling in Dynamic Skin Triangulation,We introduce relaxed scheduling as a paradigm for mesh maintenance and demonstrate its applicability to triangulating a skin surface in ℝ..
发表于 2025-3-28 05:27:44 | 显示全部楼层
发表于 2025-3-28 07:11:02 | 显示全部楼层
https://doi.org/10.1007/b11261Maxima; Triangulation; algorithm; algorithmic geometry; algorithms; combinatorial mathematics; complexity;
发表于 2025-3-28 14:17:44 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-24 21:13
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表