找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Diophantine Approximation on Linear Algebraic Groups; Transcendence Proper Michel Waldschmidt Book 2000 Springer-Verlag Berlin Heidelberg 2

[复制链接]
楼主: hierarchy
发表于 2025-3-25 05:04:57 | 显示全部楼层
M. Jansen,M. Judas,J. Saborowskire algebraic numbers . such that |.|is small but not zero. One deduces that numbers ..,..., .. belonging to a field of transcendence degree 1 admit good simultaneous approximations by algebraic numbers ..,..., .., where the quality of the approximation, namely the number max.... |.. − ..|, is controlled in terms of the degree [ℚ(..,..., ..): ℚ].
发表于 2025-3-25 09:53:01 | 显示全部楼层
发表于 2025-3-25 12:20:37 | 显示全部楼层
发表于 2025-3-25 16:51:59 | 显示全部楼层
https://doi.org/10.1007/978-3-662-11569-5Algebra; Diophantine approximation; Exponential Functions; Linear Algebraic groups; Measures of Independ
发表于 2025-3-25 19:59:42 | 显示全部楼层
发表于 2025-3-26 03:44:58 | 显示全部楼层
Michel WaldschmidtIncludes supplementary material:
发表于 2025-3-26 04:17:25 | 显示全部楼层
Grundlehren der mathematischen Wissenschaftenhttp://image.papertrans.cn/e/image/280537.jpg
发表于 2025-3-26 09:50:08 | 显示全部楼层
Design Principles for Micro Modelsas well as in the nonhomogeneous version. We also describe the six exponentials Theorem, we present the state of the art on the problem of algebraic independence of logarithms of algebraic numbers. We conclude with a few comments on the Linear Subgroup Theorem.
发表于 2025-3-26 14:44:21 | 显示全部楼层
Robert Tanton,Kimberley L. Edwardsle. Our aim is to prove the theorems of Hermite-Lindemann and Gel’ fond-Schneider by means of the alternants or interpolation determinants of M. Laurent [Lau 1989]. The real case of these two theorems (§§ 2.3 and 2.4) is easier, thanks to an estimate, due to G. Pólya (Lemma 2.2), for the number of r
发表于 2025-3-26 19:56:54 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-24 00:39
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表