找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Diophantine Approximation on Linear Algebraic Groups; Transcendence Proper Michel Waldschmidt Book 2000 Springer-Verlag Berlin Heidelberg 2

[复制链接]
楼主: hierarchy
发表于 2025-3-26 21:07:07 | 显示全部楼层
发表于 2025-3-27 02:45:44 | 显示全部楼层
Gil Viry,Stéphanie Vincent-Geslinwe give a second proof of the same theorem, using an extension of Schneider’s method. The two main tools are an upper bound for the absolute value of an alternant in several variables (Proposition 6.6) and the zero estimate (namely Theorem 5.1).
发表于 2025-3-27 09:06:01 | 显示全部楼层
发表于 2025-3-27 11:01:15 | 显示全部楼层
发表于 2025-3-27 15:33:54 | 显示全部楼层
发表于 2025-3-27 18:17:37 | 显示全部楼层
Introduction and Historical Surveyas well as in the nonhomogeneous version. We also describe the six exponentials Theorem, we present the state of the art on the problem of algebraic independence of logarithms of algebraic numbers. We conclude with a few comments on the Linear Subgroup Theorem.
发表于 2025-3-27 23:50:40 | 显示全部楼层
Zero Estimate, by Damien Royng is prescribed. This result takes into account the multidegrees of the obstruction subgroup and improves in this way the earlier zero estimates of D. W. Masser [Ma 1981b] and D. W. Masser and G. Wüstholz [MaWü 19811 A refinement will be given in Chap. 8 when multiplicities are introduced.
发表于 2025-3-28 03:27:51 | 显示全部楼层
Linear Independence of Logarithms of Algebraic Numberswe give a second proof of the same theorem, using an extension of Schneider’s method. The two main tools are an upper bound for the absolute value of an alternant in several variables (Proposition 6.6) and the zero estimate (namely Theorem 5.1).
发表于 2025-3-28 07:52:43 | 显示全部楼层
发表于 2025-3-28 14:30:32 | 显示全部楼层
Design Principles for Micro Modelsas well as in the nonhomogeneous version. We also describe the six exponentials Theorem, we present the state of the art on the problem of algebraic independence of logarithms of algebraic numbers. We conclude with a few comments on the Linear Subgroup Theorem.
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-24 00:39
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表