找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Deep Reinforcement Learning; Fundamentals, Resear Hao Dong,Zihan Ding,Shanghang Zhang Book 2020 Springer Nature Singapore Pte Ltd. 2020 Dee

[复制链接]
楼主: 战神
发表于 2025-3-30 10:03:10 | 显示全部楼层
发表于 2025-3-30 14:02:27 | 显示全部楼层
发表于 2025-3-30 18:42:30 | 显示全部楼层
Introduction to Deep Learningth a naive single-layer network and gradually progress to much more complex but powerful architectures such as convolutional neural networks (CNNs) and recurrent neural networks (RNNs). We will end this chapter with a couple of examples that demonstrate how to implement deep learning models in practice.
发表于 2025-3-30 22:28:46 | 显示全部楼层
发表于 2025-3-31 00:58:09 | 显示全部楼层
发表于 2025-3-31 08:50:25 | 显示全部楼层
发表于 2025-3-31 09:25:04 | 显示全部楼层
https://doi.org/10.1007/978-3-531-92792-3 the typical and popular algorithms in a structural way. We classify reinforcement learning algorithms from different perspectives, including model-based and model-free methods, value-based and policy-based methods (or combination of the two), Monte Carlo methods and temporal-difference methods, on-
发表于 2025-3-31 16:36:33 | 显示全部楼层
发表于 2025-3-31 21:21:56 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-21 07:03
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表