找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Deep Reinforcement Learning; Fundamentals, Resear Hao Dong,Zihan Ding,Shanghang Zhang Book 2020 Springer Nature Singapore Pte Ltd. 2020 Dee

[复制链接]
楼主: 战神
发表于 2025-3-27 00:55:27 | 显示全部楼层
Learning to Runoth continuous, which is a moderately large-scale environment for novices to gain some experiences. We provide a soft actor-critic solution for the task, as well as some tricks applied for boosting performances. The environment and code are available at ..
发表于 2025-3-27 02:25:36 | 显示全部楼层
发表于 2025-3-27 06:32:28 | 显示全部楼层
发表于 2025-3-27 12:24:16 | 显示全部楼层
发表于 2025-3-27 16:41:43 | 显示全部楼层
发表于 2025-3-27 21:19:29 | 显示全部楼层
发表于 2025-3-27 22:54:54 | 显示全部楼层
Hierarchical Reinforcement Learning algorithms in these categories, including strategic attentive writer, option-critic, and feudal networks, etc. Finally, we provide a summary of recent works on hierarchical reinforcement learning at the end of this chapter.
发表于 2025-3-28 04:26:40 | 显示全部楼层
Preußen im deutschen Föderalismustion learning can either be regarded as an initialization or a guidance for training the agent in the scope of reinforcement learning. Combination of imitation learning and reinforcement learning is a promising direction for efficient learning and faster policy optimization in practice.
发表于 2025-3-28 08:59:35 | 显示全部楼层
发表于 2025-3-28 11:04:39 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-21 00:20
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表