用户名  找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Deep Learning: Concepts and Architectures; Witold Pedrycz,Shyi-Ming Chen Book 2020 Springer Nature Switzerland AG 2020 Computational Intel

[复制链接]
楼主: ABS
发表于 2025-3-23 09:50:35 | 显示全部楼层
发表于 2025-3-23 14:29:50 | 显示全部楼层
https://doi.org/10.1007/978-3-322-97122-7nalyze the training results of a variety of model structures. While previous studies have applied convolutional neural networks to image or object recognition, our study proposes a specific encoding method that is integrated with deep learning in order to predict the results of future games. The pre
发表于 2025-3-23 21:40:40 | 显示全部楼层
发表于 2025-3-24 01:58:24 | 显示全部楼层
https://doi.org/10.1007/978-3-322-90228-3works, namely, Convolutional Neural Networks, Pretrained Unspervised Networks, and Recurrent/Recursive Neural Networks. Applications of each of these architectures in selected areas such as pattern recognition and image detection are also discussed.
发表于 2025-3-24 03:02:26 | 显示全部楼层
https://doi.org/10.1007/978-3-322-90228-3omplexity and curvature. We also describe neural networks from the viewpoints of scattering transforms and share some of the mathematical and intuitive justifications for those. We finally share a technique for visualizing and analyzing neural networks based on concept of Riemann curvature.
发表于 2025-3-24 09:42:45 | 显示全部楼层
https://doi.org/10.1007/978-3-322-90228-3utput sentences is provided. Finally, the attention mechanism which is a technique to cope with long-term dependencies and to improve the encoder-decoder performance on sophisticated tasks is studied.
发表于 2025-3-24 13:54:02 | 显示全部楼层
发表于 2025-3-24 17:21:14 | 显示全部楼层
发表于 2025-3-24 21:46:53 | 显示全部楼层
发表于 2025-3-25 01:44:28 | 显示全部楼层
1860-949X mplementations and case studies, identifying the best designThis book introduces readers to the fundamental concepts of deep learning and offers practical insights into how this learning paradigm supports automatic mechanisms of structural knowledge representation. It discusses a number of multilaye
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-6-18 07:57
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表