找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Deep Learning: Concepts and Architectures; Witold Pedrycz,Shyi-Ming Chen Book 2020 Springer Nature Switzerland AG 2020 Computational Intel

[复制链接]
查看: 8253|回复: 49
发表于 2025-3-21 19:36:06 | 显示全部楼层 |阅读模式
书目名称Deep Learning: Concepts and Architectures
编辑Witold Pedrycz,Shyi-Ming Chen
视频video
概述Provides a comprehensive and up-to-date overview of deep learning by discussing a range of methodological and algorithmic issues.Addresses implementations and case studies, identifying the best design
丛书名称Studies in Computational Intelligence
图书封面Titlebook: Deep Learning: Concepts and Architectures;  Witold Pedrycz,Shyi-Ming Chen Book 2020 Springer Nature Switzerland AG 2020 Computational Intel
描述This book introduces readers to the fundamental concepts of deep learning and offers practical insights into how this learning paradigm supports automatic mechanisms of structural knowledge representation. It discusses a number of multilayer architectures giving rise to tangible and functionally meaningful pieces of knowledge, and shows how the structural developments have become essential to the successful delivery of competitive practical solutions to real-world problems. The book also demonstrates how the architectural developments, which arise in the setting of deep learning, support detailed learning and refinements to the system design. Featuring detailed descriptions of the current trends in the design and analysis of deep learning topologies, the book offers practical guidelines and presents competitive solutions to various areas of language modeling, graph representation, and forecasting.
出版日期Book 2020
关键词Computational Intelligence; Machine Learning; Computer Vision; Natural Language Processing; Deep Learnin
版次1
doihttps://doi.org/10.1007/978-3-030-31756-0
isbn_softcover978-3-030-31758-4
isbn_ebook978-3-030-31756-0Series ISSN 1860-949X Series E-ISSN 1860-9503
issn_series 1860-949X
copyrightSpringer Nature Switzerland AG 2020
The information of publication is updating

书目名称Deep Learning: Concepts and Architectures影响因子(影响力)




书目名称Deep Learning: Concepts and Architectures影响因子(影响力)学科排名




书目名称Deep Learning: Concepts and Architectures网络公开度




书目名称Deep Learning: Concepts and Architectures网络公开度学科排名




书目名称Deep Learning: Concepts and Architectures被引频次




书目名称Deep Learning: Concepts and Architectures被引频次学科排名




书目名称Deep Learning: Concepts and Architectures年度引用




书目名称Deep Learning: Concepts and Architectures年度引用学科排名




书目名称Deep Learning: Concepts and Architectures读者反馈




书目名称Deep Learning: Concepts and Architectures读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-21 22:39:09 | 显示全部楼层
发表于 2025-3-22 02:02:30 | 显示全部楼层
Deep Neural Networks for Corrupted Labels,AR-10, CIFAR-100 and ImageNet datasets and on a large-scale Clothing 1M dataset with inherent label noise. Further, we show that with the different initialization and the regularization of the noise model, we can apply this learning procedure to text classification tasks as well. We evaluate the per
发表于 2025-3-22 06:57:48 | 显示全部楼层
发表于 2025-3-22 12:11:30 | 显示全部楼层
发表于 2025-3-22 14:45:58 | 显示全部楼层
发表于 2025-3-22 17:16:55 | 显示全部楼层
1860-949X current trends in the design and analysis of deep learning topologies, the book offers practical guidelines and presents competitive solutions to various areas of language modeling, graph representation, and forecasting.978-3-030-31758-4978-3-030-31756-0Series ISSN 1860-949X Series E-ISSN 1860-9503
发表于 2025-3-23 00:04:54 | 显示全部楼层
发表于 2025-3-23 04:39:59 | 显示全部楼层
https://doi.org/10.1007/978-3-322-90228-3ompression. Due to wide availability of high-end processing chips and large datasets, deep learning has gained a lot attention from academia, industries and research centers to solve multitude of problems. Considering the state-of-the-art literature, autoencoders are widely used architectures in man
发表于 2025-3-23 08:44:42 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-23 22:29
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表