找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Deep Learning for Biometrics; Bir Bhanu,Ajay Kumar Book 2017 Springer International Publishing AG, part of Springer Nature 2017 Deep Learn

[复制链接]
查看: 39482|回复: 49
发表于 2025-3-21 17:49:46 | 显示全部楼层 |阅读模式
书目名称Deep Learning for Biometrics
编辑Bir Bhanu,Ajay Kumar
视频video
概述The first dedicated work on advances in biometric identification capabilities using deep learning techniques.Covers a broad range of deep learning integrated biometric techniques, including face, fing
丛书名称Advances in Computer Vision and Pattern Recognition
图书封面Titlebook: Deep Learning for Biometrics;  Bir Bhanu,Ajay Kumar Book 2017 Springer International Publishing AG, part of Springer Nature 2017 Deep Learn
描述This timely text/reference presents a broad overview of advanced deep learning architectures for learning effective feature representation for perceptual and biometrics-related tasks. The text offers a showcase of cutting-edge research on the use of convolutional neural networks (CNN) in face, iris, fingerprint, and vascular biometric systems, in addition to surveillance systems that use soft biometrics. Issues of biometrics security are also examined..Topics and features: addresses the application of deep learning to enhance the performance of biometrics identification across a wide range of different biometrics modalities; revisits  deep learning for face biometrics, offering insights from neuroimaging, and provides comparison with popular CNN-based architectures for face recognition; examines deep learning for state-of-the-art latent fingerprint and finger-vein recognition, as well as iris recognition; discusses deep learning for soft biometrics, including approaches forgesture-based identification, gender classification, and tattoo recognition; investigates deep learning for biometrics security, covering biometrics template protection methods, and liveness detection to protect
出版日期Book 2017
关键词Deep Learning; Face; Fingerprint; Iris; Gait; Template Protection; Anti-Spoofing; Alexnet; CNN; RBM; Biometric
版次1
doihttps://doi.org/10.1007/978-3-319-61657-5
isbn_softcover978-3-319-87128-8
isbn_ebook978-3-319-61657-5Series ISSN 2191-6586 Series E-ISSN 2191-6594
issn_series 2191-6586
copyrightSpringer International Publishing AG, part of Springer Nature 2017
The information of publication is updating

书目名称Deep Learning for Biometrics影响因子(影响力)




书目名称Deep Learning for Biometrics影响因子(影响力)学科排名




书目名称Deep Learning for Biometrics网络公开度




书目名称Deep Learning for Biometrics网络公开度学科排名




书目名称Deep Learning for Biometrics被引频次




书目名称Deep Learning for Biometrics被引频次学科排名




书目名称Deep Learning for Biometrics年度引用




书目名称Deep Learning for Biometrics年度引用学科排名




书目名称Deep Learning for Biometrics读者反馈




书目名称Deep Learning for Biometrics读者反馈学科排名




单选投票, 共有 0 人参与投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用户组没有投票权限
发表于 2025-3-22 00:18:44 | 显示全部楼层
发表于 2025-3-22 03:53:37 | 显示全部楼层
CMS-RCNN: Contextual Multi-Scale Region-Based CNN for Unconstrained Face Detectionacial periocular recognition, facial landmarking and pose estimation, facial expression recognition, 3D facial model construction, etc. Although the face detection problem has been intensely studied for decades with various commercial applications, it still meets problems in some real-world scenario
发表于 2025-3-22 06:15:48 | 显示全部楼层
Latent Fingerprint Image Segmentation Using Deep Neural NetworkRBMs), and uses it to perform segmentation of latent fingerprint images. Artificial neural networks (ANN) are biologically inspired architectures that produce hierarchies of maps through learned weights or filters. Latent fingerprints are fingerprint impressions unintentionally left on surfaces at a
发表于 2025-3-22 10:40:09 | 显示全部楼层
Finger Vein Identification Using Convolutional Neural Network and Supervised Discrete Hashingnal privacy and anonymity in during the identification process. The Convolutional Neural Network (CNN) has shown remarkable capability for learning biometric features that can offer robust and accurate matching. We introduce a new approach for the finger vein authentication using the CNN and supervi
发表于 2025-3-22 13:09:27 | 显示全部楼层
发表于 2025-3-22 17:21:47 | 显示全部楼层
发表于 2025-3-23 00:23:44 | 显示全部楼层
发表于 2025-3-23 01:45:49 | 显示全部楼层
发表于 2025-3-23 09:14:02 | 显示全部楼层
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-26 00:47
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表