找回密码
 To register

QQ登录

只需一步,快速开始

扫一扫,访问微社区

Titlebook: Deep Learning for Biometrics; Bir Bhanu,Ajay Kumar Book 2017 Springer International Publishing AG, part of Springer Nature 2017 Deep Learn

[复制链接]
发表于 2025-3-26 21:46:56 | 显示全部楼层
发表于 2025-3-27 04:12:57 | 显示全部楼层
发表于 2025-3-27 08:39:27 | 显示全部楼层
Latent Fingerprint Image Segmentation Using Deep Neural Networkd on RBMs learns fingerprint image patches in two phases. The first phase (unsupervised pre-training) involves learning an identity mapping of the input image patches. In the second phase, fine-tuning and gradient updates are performed to minimize the cost function on the training dataset. The resul
发表于 2025-3-27 13:13:47 | 显示全部楼层
发表于 2025-3-27 15:55:39 | 显示全部楼层
Iris Segmentation Using Fully Convolutional Encoder–Decoder Networksd networks, we apply a selection of conventional (non-CNN) iris segmentation algorithms on the same datasets, and similarly evaluate their performances. The results then get compared against those obtained from the FCEDNs. Based on the results, the proposed networks achieve superior performance over
发表于 2025-3-27 20:02:54 | 显示全部楼层
发表于 2025-3-28 00:51:27 | 显示全部楼层
发表于 2025-3-28 04:48:49 | 显示全部楼层
发表于 2025-3-28 08:53:10 | 显示全部楼层
发表于 2025-3-28 11:15:50 | 显示全部楼层
Deep Triplet Embedding Representations for Liveness Detectionfingerprints are dissimilar from the ones generated artificially. A variant of the triplet objective function is employed, that considers patches taken from two real fingerprint and a replica (or two replicas and a real fingerprint), and gives a high penalty if the distance between the matching coup
 关于派博传思  派博传思旗下网站  友情链接
派博传思介绍 公司地理位置 论文服务流程 影响因子官网 SITEMAP 大讲堂 北京大学 Oxford Uni. Harvard Uni.
发展历史沿革 期刊点评 投稿经验总结 SCIENCEGARD IMPACTFACTOR 派博系数 清华大学 Yale Uni. Stanford Uni.
|Archiver|手机版|小黑屋| 派博传思国际 ( 京公网安备110108008328) GMT+8, 2025-5-26 06:29
Copyright © 2001-2015 派博传思   京公网安备110108008328 版权所有 All rights reserved
快速回复 返回顶部 返回列表